{"title":"鲍姆-康尼的变形被非酉表示扭曲","authors":"M. Gomez-Aparicio","doi":"10.1017/IS009012003JKT078","DOIUrl":null,"url":null,"abstract":"Let G be a locally compact group and ρ a non-unitary finite dimensional representation of G. We consider tensor products of ρ by some unitary representations of G in order to define two Banach algebras analogous to the group C∗-algebras, C∗(G) and C∗ r (G). We calculate the K-theory of such algebras for a large class of groups satisfying the Baum-Connes conjecture. Table des matieres Introduction 2 1. Algebres de groupe tordues 6 1.1. Definitions et proprietes principales 6 1.2. Fonctorialite 10 2. Morphisme de Baum-Connes tordu 11 2.1. Fleche de descente tordue 11 2.2. Fonctorialite 20 2.3. Descente et action de KK sur la K-theorie. 25 2.4. Construction du morphisme tordu 27 2.5. Compatibilite avec la somme directe de representations 28 3. Groupes admettant un element γ de Kasparov 33 3.1. Coefficients dans une algebre propre 33 3.2. Element γ de Kasparov 37 References 39 2000 Mathematics Subject Classification. 22D12, 22D15, 46L80, 19K35.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"6 1","pages":"23-68"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS009012003JKT078","citationCount":"5","resultStr":"{\"title\":\"Morphisme de Baum-Connes tordu par une représentation non unitaire\",\"authors\":\"M. Gomez-Aparicio\",\"doi\":\"10.1017/IS009012003JKT078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a locally compact group and ρ a non-unitary finite dimensional representation of G. We consider tensor products of ρ by some unitary representations of G in order to define two Banach algebras analogous to the group C∗-algebras, C∗(G) and C∗ r (G). We calculate the K-theory of such algebras for a large class of groups satisfying the Baum-Connes conjecture. Table des matieres Introduction 2 1. Algebres de groupe tordues 6 1.1. Definitions et proprietes principales 6 1.2. Fonctorialite 10 2. Morphisme de Baum-Connes tordu 11 2.1. Fleche de descente tordue 11 2.2. Fonctorialite 20 2.3. Descente et action de KK sur la K-theorie. 25 2.4. Construction du morphisme tordu 27 2.5. Compatibilite avec la somme directe de representations 28 3. Groupes admettant un element γ de Kasparov 33 3.1. Coefficients dans une algebre propre 33 3.2. Element γ de Kasparov 37 References 39 2000 Mathematics Subject Classification. 22D12, 22D15, 46L80, 19K35.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"6 1\",\"pages\":\"23-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS009012003JKT078\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS009012003JKT078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS009012003JKT078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
设G是一个局部紧群,ρ是G的非酉有限维表示。我们用G的一些酉表示来考虑ρ的张量积,以便定义两个类似于群C∗-代数,C∗(G)和C∗r (G)的Banach代数。我们计算了一类满足baum - cones猜想的群的这类代数的k理论。表3材料简介2群代数定理6 1.1。定义和所有权原则6功能型10 2。Morphisme de Baum-Connes tordu 11 2.1。在11月22日下降。功能化20 2.3。KK的下降和作用取决于k理论。25 2.4。构词法27 . 2.5。相容的平均数有一些直接的表示。群组辅助元素γ de Kasparov 33 3.1。系数是一个代数表达式33 3.2。元素γ de Kasparov 37参考文献39 2000数学学科分类。22D12, 22D15, 46L80, 19K35。
Morphisme de Baum-Connes tordu par une représentation non unitaire
Let G be a locally compact group and ρ a non-unitary finite dimensional representation of G. We consider tensor products of ρ by some unitary representations of G in order to define two Banach algebras analogous to the group C∗-algebras, C∗(G) and C∗ r (G). We calculate the K-theory of such algebras for a large class of groups satisfying the Baum-Connes conjecture. Table des matieres Introduction 2 1. Algebres de groupe tordues 6 1.1. Definitions et proprietes principales 6 1.2. Fonctorialite 10 2. Morphisme de Baum-Connes tordu 11 2.1. Fleche de descente tordue 11 2.2. Fonctorialite 20 2.3. Descente et action de KK sur la K-theorie. 25 2.4. Construction du morphisme tordu 27 2.5. Compatibilite avec la somme directe de representations 28 3. Groupes admettant un element γ de Kasparov 33 3.1. Coefficients dans une algebre propre 33 3.2. Element γ de Kasparov 37 References 39 2000 Mathematics Subject Classification. 22D12, 22D15, 46L80, 19K35.