{"title":"分层与麦基函子II:全局定义的麦基函子","authors":"P. Webb","doi":"10.1017/IS009010011JKT095","DOIUrl":null,"url":null,"abstract":"We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"6 1","pages":"99-170"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS009010011JKT095","citationCount":"23","resultStr":"{\"title\":\"Stratifications and Mackey Functors II: Globally Defined Mackey Functors\",\"authors\":\"P. Webb\",\"doi\":\"10.1017/IS009010011JKT095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"6 1\",\"pages\":\"99-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS009010011JKT095\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS009010011JKT095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS009010011JKT095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stratifications and Mackey Functors II: Globally Defined Mackey Functors
We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.