分层与麦基函子II:全局定义的麦基函子

P. Webb
{"title":"分层与麦基函子II:全局定义的麦基函子","authors":"P. Webb","doi":"10.1017/IS009010011JKT095","DOIUrl":null,"url":null,"abstract":"We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"6 1","pages":"99-170"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS009010011JKT095","citationCount":"23","resultStr":"{\"title\":\"Stratifications and Mackey Functors II: Globally Defined Mackey Functors\",\"authors\":\"P. Webb\",\"doi\":\"10.1017/IS009010011JKT095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"6 1\",\"pages\":\"99-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS009010011JKT095\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS009010011JKT095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS009010011JKT095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们描述了与代数分层理论相关的全局定义麦基函子的结构性质。我们证明了在特征为零的域上,它们形成了一个权重最高的范畴,并且我们还精确地确定了这个范畴何时是半简单的。这种方法被用来证明Cartan矩阵通常是对称的和非奇异的,并且我们能够在某些情况下计算它的有限部分。在群表示论的精神下,我们也发展了全局定义的Mackey函子的顶点理论,并给出了简单函子之间的扩展信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stratifications and Mackey Functors II: Globally Defined Mackey Functors
We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信