利用超声介导的DNA递送原位基因工程生物膜

IF 4.8 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chun Kiat Ng, Samuel L. Putra, Joseph Kennerley, Robert Habgood, Ronald A. Roy, Jason L. Raymond, Ian P. Thompson, Wei E. Huang
{"title":"利用超声介导的DNA递送原位基因工程生物膜","authors":"Chun Kiat Ng,&nbsp;Samuel L. Putra,&nbsp;Joseph Kennerley,&nbsp;Robert Habgood,&nbsp;Ronald A. Roy,&nbsp;Jason L. Raymond,&nbsp;Ian P. Thompson,&nbsp;Wei E. Huang","doi":"10.1111/1751-7915.13823","DOIUrl":null,"url":null,"abstract":"<p>The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms <i>in situ</i>. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10<sup>-7</sup> cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated <i>Pseudomonas putida</i> UWC1 biofilms expressed sfGFP in flow cells and UDD-treated <i>Shewanella oneidensis</i> MR-1 biofilms generated significantly (<i>P</i> &lt; 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm<sup>−2</sup>) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm<sup>−2</sup>). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm<sup>3</sup> and 300 cm<sup>3</sup>, respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 4","pages":"1580-1593"},"PeriodicalIF":4.8000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13823","citationCount":"5","resultStr":"{\"title\":\"Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery\",\"authors\":\"Chun Kiat Ng,&nbsp;Samuel L. Putra,&nbsp;Joseph Kennerley,&nbsp;Robert Habgood,&nbsp;Ronald A. Roy,&nbsp;Jason L. Raymond,&nbsp;Ian P. Thompson,&nbsp;Wei E. Huang\",\"doi\":\"10.1111/1751-7915.13823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms <i>in situ</i>. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10<sup>-7</sup> cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated <i>Pseudomonas putida</i> UWC1 biofilms expressed sfGFP in flow cells and UDD-treated <i>Shewanella oneidensis</i> MR-1 biofilms generated significantly (<i>P</i> &lt; 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm<sup>−2</sup>) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm<sup>−2</sup>). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm<sup>3</sup> and 300 cm<sup>3</sup>, respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.</p>\",\"PeriodicalId\":49145,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"14 4\",\"pages\":\"1580-1593\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1751-7915.13823\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13823\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13823","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

直接修饰天然和已建立的生物膜的能力在理解微生物生态学和生物膜在“现实世界”系统中的应用方面具有巨大的潜力。然而,在任何规模上对已建立的生物膜进行有效的遗传转化仍然具有挑战性。在这项研究中,我们应用超声介导的DNA递送(UDD)技术将质粒引入原位建立的非活性生物膜。将两种不同的含有超文件夹绿色荧光蛋白(sfGFP)和黄素合成途径编码基因的质粒分别引入到已建立的细菌生物膜(生物膜中转化效率为3.9±0.3 × 10-7细胞)和微生物燃料电池(MFCs)中,均采用UDD。观察了转基因细菌生物膜的基因表达和功能效应,udd处理的恶臭假单胞菌UWC1生物膜中部分细胞在流式细胞中表达sfGFP, udd处理的希瓦氏菌MR-1生物膜中产生显著的sfGFP (P <与野生型对照组(~ 13.6±1.6µA cm−2)相比,MFC产生的生物电(21.9±1.2µA cm−2)增加(61%)。由于抗生素耐药性和代谢增强,UDD的作用在随后的选择压力下被放大。在微生物流动细胞和MFC系统中,udd诱导的基因在生物膜上的转移被成功证明,工作体积分别为0.16 cm3和300 cm3,表明操作体积显著扩大。这是第一个报告潜在可扩展的直接基因工程方法用于已建立的非胜任生物膜的研究,可用于增强其在环境,工业和医疗应用方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery

Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery

The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm−2) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm−2). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3, respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
9.80
自引率
3.50%
发文量
162
审稿时长
6-12 weeks
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信