{"title":"基于传感器的自由基在细胞系统中的作用和相互作用的测量","authors":"Calum J McNeil, Philip Manning","doi":"10.1016/S1389-0352(01)00056-3","DOIUrl":null,"url":null,"abstract":"<div><p><span>Direct real-time electrochemical measurements have offered new insight into the importance of free radical interplay in a number of cell culture and in vivo models of neurodegenerative processes. This review highlights investigations carried out in this laboratory of real-time superoxide and nitric oxide free radical generation, and presents evidence of complex inter-relationships between these species. These include: a novel function for astrocytic nitric oxide synthase in controlling neuronal nitric oxide availability; and the demonstration that extracellular superoxide flux can lead to the generation of NO by </span>glial cells. The possible consequences of these interactions are discussed.</p></div>","PeriodicalId":101090,"journal":{"name":"Reviews in Molecular Biotechnology","volume":"82 4","pages":"Pages 443-455"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1389-0352(01)00056-3","citationCount":"28","resultStr":"{\"title\":\"Sensor-based measurements of the role and interactions of free radicals in cellular systems\",\"authors\":\"Calum J McNeil, Philip Manning\",\"doi\":\"10.1016/S1389-0352(01)00056-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Direct real-time electrochemical measurements have offered new insight into the importance of free radical interplay in a number of cell culture and in vivo models of neurodegenerative processes. This review highlights investigations carried out in this laboratory of real-time superoxide and nitric oxide free radical generation, and presents evidence of complex inter-relationships between these species. These include: a novel function for astrocytic nitric oxide synthase in controlling neuronal nitric oxide availability; and the demonstration that extracellular superoxide flux can lead to the generation of NO by </span>glial cells. The possible consequences of these interactions are discussed.</p></div>\",\"PeriodicalId\":101090,\"journal\":{\"name\":\"Reviews in Molecular Biotechnology\",\"volume\":\"82 4\",\"pages\":\"Pages 443-455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1389-0352(01)00056-3\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Molecular Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389035201000563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Molecular Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389035201000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensor-based measurements of the role and interactions of free radicals in cellular systems
Direct real-time electrochemical measurements have offered new insight into the importance of free radical interplay in a number of cell culture and in vivo models of neurodegenerative processes. This review highlights investigations carried out in this laboratory of real-time superoxide and nitric oxide free radical generation, and presents evidence of complex inter-relationships between these species. These include: a novel function for astrocytic nitric oxide synthase in controlling neuronal nitric oxide availability; and the demonstration that extracellular superoxide flux can lead to the generation of NO by glial cells. The possible consequences of these interactions are discussed.