{"title":"表面的单分子研究:从分析到构造再回来","authors":"Karin Busch, Robert Tampé","doi":"10.1016/S1389-0352(01)00026-5","DOIUrl":null,"url":null,"abstract":"<div><p>The study of single molecules opens a new dimension in understanding nature down to its finest ramifications. While much progress was achieved in the last decade concerning the detection techniques, suitable techniques for manipulating and handling the biomolecules still bear a challenge. Primarily, the task is keeping an individual, active molecule of a certain lifespan in the spot. Here, we will focus on techniques for the functional immobilization of (single) molecules on surfaces to enable their observation at one position over a time period. Presenting the main methods of reversible immobilization we will accentuate the chelator lipid concept as combining all features prerequisite for functional, reversible and well-defined immobilization. This will also show that single molecule research in principle is the synthesis of an insight into the function of nature and nano-biotechnology (manipulation): thus of analytics, construction, and back.</p></div>","PeriodicalId":101090,"journal":{"name":"Reviews in Molecular Biotechnology","volume":"82 1","pages":"Pages 3-24"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1389-0352(01)00026-5","citationCount":"10","resultStr":"{\"title\":\"Single molecule research on surfaces: from analytics to construction and back\",\"authors\":\"Karin Busch, Robert Tampé\",\"doi\":\"10.1016/S1389-0352(01)00026-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of single molecules opens a new dimension in understanding nature down to its finest ramifications. While much progress was achieved in the last decade concerning the detection techniques, suitable techniques for manipulating and handling the biomolecules still bear a challenge. Primarily, the task is keeping an individual, active molecule of a certain lifespan in the spot. Here, we will focus on techniques for the functional immobilization of (single) molecules on surfaces to enable their observation at one position over a time period. Presenting the main methods of reversible immobilization we will accentuate the chelator lipid concept as combining all features prerequisite for functional, reversible and well-defined immobilization. This will also show that single molecule research in principle is the synthesis of an insight into the function of nature and nano-biotechnology (manipulation): thus of analytics, construction, and back.</p></div>\",\"PeriodicalId\":101090,\"journal\":{\"name\":\"Reviews in Molecular Biotechnology\",\"volume\":\"82 1\",\"pages\":\"Pages 3-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1389-0352(01)00026-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Molecular Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389035201000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Molecular Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389035201000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single molecule research on surfaces: from analytics to construction and back
The study of single molecules opens a new dimension in understanding nature down to its finest ramifications. While much progress was achieved in the last decade concerning the detection techniques, suitable techniques for manipulating and handling the biomolecules still bear a challenge. Primarily, the task is keeping an individual, active molecule of a certain lifespan in the spot. Here, we will focus on techniques for the functional immobilization of (single) molecules on surfaces to enable their observation at one position over a time period. Presenting the main methods of reversible immobilization we will accentuate the chelator lipid concept as combining all features prerequisite for functional, reversible and well-defined immobilization. This will also show that single molecule research in principle is the synthesis of an insight into the function of nature and nano-biotechnology (manipulation): thus of analytics, construction, and back.