Maria Kraakman-van der Zwet , Wilhelmina J.I. Overkamp , Nicolaas G.J. Jaspers , Adayapalam T. Natarajan , Paul H.M. Lohman , Małgorzata Z. Zdzienicka
{"title":"AT/NBS杂交中染色体畸变的互补:RDS作为不朽NBS细胞互补研究终点的不足","authors":"Maria Kraakman-van der Zwet , Wilhelmina J.I. Overkamp , Nicolaas G.J. Jaspers , Adayapalam T. Natarajan , Paul H.M. Lohman , Małgorzata Z. Zdzienicka","doi":"10.1016/S0921-8777(00)00078-1","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Nijmegen breakage syndrome<span> (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by </span></span>radiosensitivity<span><span>, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of </span>chromosomal aberrations<span> and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS </span></span></span>lymphoblasts<span> were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the </span></span><em>NBS1</em> gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.</p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"485 3","pages":"Pages 177-185"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(00)00078-1","citationCount":"7","resultStr":"{\"title\":\"Complementation of chromosomal aberrations in AT/NBS hybrids: inadequacy of RDS as an endpoint in complementation studies with immortal NBS cells\",\"authors\":\"Maria Kraakman-van der Zwet , Wilhelmina J.I. Overkamp , Nicolaas G.J. Jaspers , Adayapalam T. Natarajan , Paul H.M. Lohman , Małgorzata Z. Zdzienicka\",\"doi\":\"10.1016/S0921-8777(00)00078-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Nijmegen breakage syndrome<span> (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by </span></span>radiosensitivity<span><span>, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of </span>chromosomal aberrations<span> and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS </span></span></span>lymphoblasts<span> were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the </span></span><em>NBS1</em> gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.</p></div>\",\"PeriodicalId\":100935,\"journal\":{\"name\":\"Mutation Research/DNA Repair\",\"volume\":\"485 3\",\"pages\":\"Pages 177-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0921-8777(00)00078-1\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921877700000781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877700000781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complementation of chromosomal aberrations in AT/NBS hybrids: inadequacy of RDS as an endpoint in complementation studies with immortal NBS cells
Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by radiosensitivity, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of chromosomal aberrations and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS lymphoblasts were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the NBS1 gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.