{"title":"带有摩擦的单侧接触问题","authors":"Avtandil Gachechiladze, Roland Gachechiladze","doi":"10.1016/j.trmi.2016.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>The boundary contact problem for a micropolar homogeneous elastic hemitropic medium with a friction is investigated. Here, on a part of the elastic medium surface with a friction, instead of a normal component of force stress there is prescribed the normal component of the displacement vector. We give their mathematical formulation of the Problem in the form of spatial variational inequalities. We consider two cases, the so-called coercive case (when elastic medium is fixed along some part of the boundary) and semi-coercive case (the boundary is not fixed). Based on our variational inequality approach, we prove the existence and uniqueness theorems and show that solutions continuously depend on the data of the original problem. In the semi-coercive case, the necessary condition of solvability of the corresponding contact problem is written out explicitly. This condition under certain restrictions is sufficient, as well.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"170 3","pages":"Pages 363-375"},"PeriodicalIF":0.3000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2016.09.003","citationCount":"0","resultStr":"{\"title\":\"Unilateral contact problems with a friction\",\"authors\":\"Avtandil Gachechiladze, Roland Gachechiladze\",\"doi\":\"10.1016/j.trmi.2016.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The boundary contact problem for a micropolar homogeneous elastic hemitropic medium with a friction is investigated. Here, on a part of the elastic medium surface with a friction, instead of a normal component of force stress there is prescribed the normal component of the displacement vector. We give their mathematical formulation of the Problem in the form of spatial variational inequalities. We consider two cases, the so-called coercive case (when elastic medium is fixed along some part of the boundary) and semi-coercive case (the boundary is not fixed). Based on our variational inequality approach, we prove the existence and uniqueness theorems and show that solutions continuously depend on the data of the original problem. In the semi-coercive case, the necessary condition of solvability of the corresponding contact problem is written out explicitly. This condition under certain restrictions is sufficient, as well.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"170 3\",\"pages\":\"Pages 363-375\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2016.09.003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216300770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216300770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The boundary contact problem for a micropolar homogeneous elastic hemitropic medium with a friction is investigated. Here, on a part of the elastic medium surface with a friction, instead of a normal component of force stress there is prescribed the normal component of the displacement vector. We give their mathematical formulation of the Problem in the form of spatial variational inequalities. We consider two cases, the so-called coercive case (when elastic medium is fixed along some part of the boundary) and semi-coercive case (the boundary is not fixed). Based on our variational inequality approach, we prove the existence and uniqueness theorems and show that solutions continuously depend on the data of the original problem. In the semi-coercive case, the necessary condition of solvability of the corresponding contact problem is written out explicitly. This condition under certain restrictions is sufficient, as well.