地磁场中的堪察加流星体效应

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
L. F. Chernogor
{"title":"地磁场中的堪察加流星体效应","authors":"L. F. Chernogor","doi":"10.3103/S0884591322010032","DOIUrl":null,"url":null,"abstract":"<p>The data acquired at ten geomagnetic observatories (Paratunka, Magadan, Yakutsk, and Khabarovsk (the Russian Federation); Memambetsu, Kanoya, and Kakioka (Japan); Cheongyang (Republic of Korea); Shumagin and College (USA)) during the Kamchatka meteoroid event of December 18, 2018, and on the reference days of December 17 and 19, 2018, have been used to analyze temporal variations in the geomagnetic field components. The distance <i>r</i> from the observatories to the site of explosive energy release by the meteoroid varied from 1.001 to 4.247 Mm. The passage of the Kamchatka meteoroid through the magnetosphere and atmosphere was accompanied by variations mainly in the <i>H</i> geomagnetic field component. The magnetic effect from the magnetosphere was observed to occur twice, 51 and 28 min prior to the meteoroid explosion; the amplitude of the disturbances in the geomagnetic field did not exceed 0.2–1 nT, and the durations were observed to be approximately 20 and 10 min, respectively. Alternating peaks in the level of the <i>H</i> component were observed to lag behind the meteoroid explosion by 8 to 13 min for <i>r</i> from 1.001 to 4.247 Mm. The amplitude of the oscillations varied with increasing <i>r</i> from ~0.5 to ~0.1 nT, while the duration of the magnetic effect from the ionosphere varied in the 16–25-min range for all distances. The apparent speed of propagation in this group of disturbances that were of MHD nature was observed to be approximately 10 km/s. In the second group of disturbances, the time lag increased with increasing distance within the distance range mentioned above from 56 to 218 min. The duration of the disturbance was approximately 16–65 min, the apparent speed was 336 m/s, and the period was 5–10 min. This disturbance in the magnetic field was caused by an atmospheric gravity wave propagating from the meteoroid explosion. The theoretical models for the magnetic effects observed are presented and theoretical estimates are performed. The observations are in agreement with the estimates.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"38 1","pages":"25 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kamchatka Meteoroid Effects in the Geomagnetic Field\",\"authors\":\"L. F. Chernogor\",\"doi\":\"10.3103/S0884591322010032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The data acquired at ten geomagnetic observatories (Paratunka, Magadan, Yakutsk, and Khabarovsk (the Russian Federation); Memambetsu, Kanoya, and Kakioka (Japan); Cheongyang (Republic of Korea); Shumagin and College (USA)) during the Kamchatka meteoroid event of December 18, 2018, and on the reference days of December 17 and 19, 2018, have been used to analyze temporal variations in the geomagnetic field components. The distance <i>r</i> from the observatories to the site of explosive energy release by the meteoroid varied from 1.001 to 4.247 Mm. The passage of the Kamchatka meteoroid through the magnetosphere and atmosphere was accompanied by variations mainly in the <i>H</i> geomagnetic field component. The magnetic effect from the magnetosphere was observed to occur twice, 51 and 28 min prior to the meteoroid explosion; the amplitude of the disturbances in the geomagnetic field did not exceed 0.2–1 nT, and the durations were observed to be approximately 20 and 10 min, respectively. Alternating peaks in the level of the <i>H</i> component were observed to lag behind the meteoroid explosion by 8 to 13 min for <i>r</i> from 1.001 to 4.247 Mm. The amplitude of the oscillations varied with increasing <i>r</i> from ~0.5 to ~0.1 nT, while the duration of the magnetic effect from the ionosphere varied in the 16–25-min range for all distances. The apparent speed of propagation in this group of disturbances that were of MHD nature was observed to be approximately 10 km/s. In the second group of disturbances, the time lag increased with increasing distance within the distance range mentioned above from 56 to 218 min. The duration of the disturbance was approximately 16–65 min, the apparent speed was 336 m/s, and the period was 5–10 min. This disturbance in the magnetic field was caused by an atmospheric gravity wave propagating from the meteoroid explosion. The theoretical models for the magnetic effects observed are presented and theoretical estimates are performed. The observations are in agreement with the estimates.</p>\",\"PeriodicalId\":681,\"journal\":{\"name\":\"Kinematics and Physics of Celestial Bodies\",\"volume\":\"38 1\",\"pages\":\"25 - 48\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinematics and Physics of Celestial Bodies\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0884591322010032\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591322010032","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

10个地磁观测站(帕拉图卡、马加丹、雅库茨克和哈巴罗夫斯克(俄罗斯联邦))获得的数据;Memambetsu, Kanoya和Kakioka(日本);清阳(大韩民国);利用Shumagin and College(美国)在2018年12月18日堪察加流星体事件期间以及2018年12月17日和19日的参考日,分析了地磁场分量的时间变化。观测站到流星体爆炸能量释放点的距离r在1.001 ~ 4.247 Mm之间变化。流星体通过磁层和大气的过程中,主要伴随着地磁场分量H的变化。磁层的磁效应在流星体爆炸前51分钟和28分钟两次被观测到;地磁场扰动幅度不超过0.2-1 nT,持续时间分别约为20 min和10 min。在r从1.001到4.247 Mm范围内,H分量的交替峰值滞后于流星体爆炸8 ~ 13 min。振荡幅度随r从~0.5到~0.1 nT的增加而变化,而电离层磁效应的持续时间在16 ~ 25 min范围内变化。在这组具有MHD性质的扰动中,观测到的表观传播速度约为10公里/秒。在第2组扰动中,时间滞后随距离的增加而增大,在上述距离范围内为56 ~ 218 min,扰动持续时间约为16 ~ 65 min,视速度为336 m/s,周期为5 ~ 10 min。这种磁场扰动是由流星体爆炸传播的大气重力波引起的。提出了观测到的磁效应的理论模型,并进行了理论估计。观察结果与估计相符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kamchatka Meteoroid Effects in the Geomagnetic Field

The data acquired at ten geomagnetic observatories (Paratunka, Magadan, Yakutsk, and Khabarovsk (the Russian Federation); Memambetsu, Kanoya, and Kakioka (Japan); Cheongyang (Republic of Korea); Shumagin and College (USA)) during the Kamchatka meteoroid event of December 18, 2018, and on the reference days of December 17 and 19, 2018, have been used to analyze temporal variations in the geomagnetic field components. The distance r from the observatories to the site of explosive energy release by the meteoroid varied from 1.001 to 4.247 Mm. The passage of the Kamchatka meteoroid through the magnetosphere and atmosphere was accompanied by variations mainly in the H geomagnetic field component. The magnetic effect from the magnetosphere was observed to occur twice, 51 and 28 min prior to the meteoroid explosion; the amplitude of the disturbances in the geomagnetic field did not exceed 0.2–1 nT, and the durations were observed to be approximately 20 and 10 min, respectively. Alternating peaks in the level of the H component were observed to lag behind the meteoroid explosion by 8 to 13 min for r from 1.001 to 4.247 Mm. The amplitude of the oscillations varied with increasing r from ~0.5 to ~0.1 nT, while the duration of the magnetic effect from the ionosphere varied in the 16–25-min range for all distances. The apparent speed of propagation in this group of disturbances that were of MHD nature was observed to be approximately 10 km/s. In the second group of disturbances, the time lag increased with increasing distance within the distance range mentioned above from 56 to 218 min. The duration of the disturbance was approximately 16–65 min, the apparent speed was 336 m/s, and the period was 5–10 min. This disturbance in the magnetic field was caused by an atmospheric gravity wave propagating from the meteoroid explosion. The theoretical models for the magnetic effects observed are presented and theoretical estimates are performed. The observations are in agreement with the estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信