热环境下纳米复合材料的冲击载荷研究

G. Balaganeshan , M. Pushparaja , R. Velmurugan , N.K. Gupta
{"title":"热环境下纳米复合材料的冲击载荷研究","authors":"G. Balaganeshan ,&nbsp;M. Pushparaja ,&nbsp;R. Velmurugan ,&nbsp;N.K. Gupta","doi":"10.1016/j.piutam.2017.06.022","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates energy absorption of thermally loaded composites and nanocomposites laminates during impact loading. The laminates are prepared by glass fiber/epoxy with and without nano particles in the matrix system. Nano clay and carbon nano tube are used as filliers in the epoxy matrix. The composites specimens are subjected to impact loading at 0° C, 30° C and 60° C temperature environments. A gas gun impact testing facility is used for propelling the projectile of mass 7.6 g and diameter 9.5 mm with hemi spherical nose. The initial and residual velocities of projectile are predicted to find the energy absorbing capacity of laminates. The energy absorption and delamination area of the specimens are analyzed and discussed for the laminates with and without clay. Also, the ballistic limit is predicted for the specimens of nanocomposites made with glass fibers and epoxy matrix, and the effect of temperature on impact resistance is discussed. Analytical model is developed and the energy absorption characteristics are also studied.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"23 ","pages":"Pages 210-219"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.06.022","citationCount":"13","resultStr":"{\"title\":\"Impact Loading on Nanocomposites in Thermal Environment\",\"authors\":\"G. Balaganeshan ,&nbsp;M. Pushparaja ,&nbsp;R. Velmurugan ,&nbsp;N.K. Gupta\",\"doi\":\"10.1016/j.piutam.2017.06.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates energy absorption of thermally loaded composites and nanocomposites laminates during impact loading. The laminates are prepared by glass fiber/epoxy with and without nano particles in the matrix system. Nano clay and carbon nano tube are used as filliers in the epoxy matrix. The composites specimens are subjected to impact loading at 0° C, 30° C and 60° C temperature environments. A gas gun impact testing facility is used for propelling the projectile of mass 7.6 g and diameter 9.5 mm with hemi spherical nose. The initial and residual velocities of projectile are predicted to find the energy absorbing capacity of laminates. The energy absorption and delamination area of the specimens are analyzed and discussed for the laminates with and without clay. Also, the ballistic limit is predicted for the specimens of nanocomposites made with glass fibers and epoxy matrix, and the effect of temperature on impact resistance is discussed. Analytical model is developed and the energy absorption characteristics are also studied.</p></div>\",\"PeriodicalId\":74499,\"journal\":{\"name\":\"Procedia IUTAM\",\"volume\":\"23 \",\"pages\":\"Pages 210-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.piutam.2017.06.022\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia IUTAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210983817300871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了热载荷复合材料和纳米复合材料层合板在冲击载荷过程中的能量吸收。用玻璃纤维/环氧树脂制备复合材料,在基体体系中添加和不添加纳米颗粒。采用纳米粘土和碳纳米管作为环氧树脂基体的填料。复合材料试样在0°C、30°C和60°C的温度环境下进行冲击加载。采用气枪冲击试验装置,对质量7.6 g、直径9.5 mm、弹头为半球形的弹丸进行推进。通过对弹丸初始速度和剩余速度的预测,确定了层合板的吸能能力。对含粘土和不含粘土层合板的吸能和分层面积进行了分析和讨论。预测了玻璃纤维和环氧基纳米复合材料试样的抗冲击极限,并讨论了温度对抗冲击性能的影响。建立了分析模型,并对其能量吸收特性进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact Loading on Nanocomposites in Thermal Environment

This study investigates energy absorption of thermally loaded composites and nanocomposites laminates during impact loading. The laminates are prepared by glass fiber/epoxy with and without nano particles in the matrix system. Nano clay and carbon nano tube are used as filliers in the epoxy matrix. The composites specimens are subjected to impact loading at 0° C, 30° C and 60° C temperature environments. A gas gun impact testing facility is used for propelling the projectile of mass 7.6 g and diameter 9.5 mm with hemi spherical nose. The initial and residual velocities of projectile are predicted to find the energy absorbing capacity of laminates. The energy absorption and delamination area of the specimens are analyzed and discussed for the laminates with and without clay. Also, the ballistic limit is predicted for the specimens of nanocomposites made with glass fibers and epoxy matrix, and the effect of temperature on impact resistance is discussed. Analytical model is developed and the energy absorption characteristics are also studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信