立方对称晶格中配位球的规律

Mikhail Starostenkov , Pavel Tabakov , Veronika Romanenko , Evgeniya Chernykh
{"title":"立方对称晶格中配位球的规律","authors":"Mikhail Starostenkov ,&nbsp;Pavel Tabakov ,&nbsp;Veronika Romanenko ,&nbsp;Evgeniya Chernykh","doi":"10.1016/j.piutam.2017.06.018","DOIUrl":null,"url":null,"abstract":"<div><p>A procedure that allows us to describe the distribution patterns of atomic sites of the diamond type structure over the coordination spheres is presented. The spatial packing of the coordination spheres is formed by the vertices of the seven base polyhedra with cubic symmetry and the four polyhedra with tetrahedral symmetry. The former is given by a set of the seven regular or semi-regular polyhedra of Platonic and Archimedean solids such as the cube, the truncated cube, the octahedron, the cubic-, truncated-, rhomboidal-, and truncated cubic octahedrons. The latter is given by a set of four other shapes such as the tetrahedron, the rhombohedral-, truncated-, and truncated rhombohedral tetrahedrons.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"23 ","pages":"Pages 167-176"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.06.018","citationCount":"1","resultStr":"{\"title\":\"Regularities of Coordination Spheres in the Crystal Lattice of the Cubic Symmetry\",\"authors\":\"Mikhail Starostenkov ,&nbsp;Pavel Tabakov ,&nbsp;Veronika Romanenko ,&nbsp;Evgeniya Chernykh\",\"doi\":\"10.1016/j.piutam.2017.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A procedure that allows us to describe the distribution patterns of atomic sites of the diamond type structure over the coordination spheres is presented. The spatial packing of the coordination spheres is formed by the vertices of the seven base polyhedra with cubic symmetry and the four polyhedra with tetrahedral symmetry. The former is given by a set of the seven regular or semi-regular polyhedra of Platonic and Archimedean solids such as the cube, the truncated cube, the octahedron, the cubic-, truncated-, rhomboidal-, and truncated cubic octahedrons. The latter is given by a set of four other shapes such as the tetrahedron, the rhombohedral-, truncated-, and truncated rhombohedral tetrahedrons.</p></div>\",\"PeriodicalId\":74499,\"journal\":{\"name\":\"Procedia IUTAM\",\"volume\":\"23 \",\"pages\":\"Pages 167-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.piutam.2017.06.018\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia IUTAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210983817300834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种描述金刚石型结构在配位球上原子位分布规律的方法。配位球的空间填充由7个立方对称的基多面体顶点和4个四面体对称的多面体顶点构成。前者由柏拉图和阿基米德固体的七个正多面体组成,如立方体、截断立方体、八面体、立方、截断八面体、菱形八面体和截断立方八面体。后者由其他四种形状的集合给出,如四面体、菱形、截形和截形菱形四面体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularities of Coordination Spheres in the Crystal Lattice of the Cubic Symmetry

A procedure that allows us to describe the distribution patterns of atomic sites of the diamond type structure over the coordination spheres is presented. The spatial packing of the coordination spheres is formed by the vertices of the seven base polyhedra with cubic symmetry and the four polyhedra with tetrahedral symmetry. The former is given by a set of the seven regular or semi-regular polyhedra of Platonic and Archimedean solids such as the cube, the truncated cube, the octahedron, the cubic-, truncated-, rhomboidal-, and truncated cubic octahedrons. The latter is given by a set of four other shapes such as the tetrahedron, the rhombohedral-, truncated-, and truncated rhombohedral tetrahedrons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信