等效非均匀性的定义,适用于各种间相模型和各种形状的非均匀性

Lidiia Nazarenko , Henryk Stolarski , Holm Altenbach
{"title":"等效非均匀性的定义,适用于各种间相模型和各种形状的非均匀性","authors":"Lidiia Nazarenko ,&nbsp;Henryk Stolarski ,&nbsp;Holm Altenbach","doi":"10.1016/j.piutam.2017.03.038","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of equivalent inhomogeneity has been introduced to analyze the effective properties of composites with interphases using techniques devised for problems without interphases. The basic idea is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity with constant stiffness tensor, combining properties of both, which is then perfectly boned to the matrix. In this presentation a new definition of equivalent inhomogeneity is discussed. It is based on Hill's energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical and cylindrical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective properties of randomly distributed unidirectional particulate composites. Properties of the equivalent cylindrical inhomogeneities are transversely isotropic, thus the method of conditional moments, which is a statistical method capable of handling anisotropy and randomness, has been employed for that purpose. Closed-form formulas for the effective stiffness tensor have been developed in all cases considered here. Comparisons with solutions available in the literature are made and other possible applications are discussed.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"21 ","pages":"Pages 63-70"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.038","citationCount":"3","resultStr":"{\"title\":\"A Definition of Equivalent Inhomogeneity Applicable to Various Interphase Models and Various Shapes of Inhomogeneity\",\"authors\":\"Lidiia Nazarenko ,&nbsp;Henryk Stolarski ,&nbsp;Holm Altenbach\",\"doi\":\"10.1016/j.piutam.2017.03.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of equivalent inhomogeneity has been introduced to analyze the effective properties of composites with interphases using techniques devised for problems without interphases. The basic idea is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity with constant stiffness tensor, combining properties of both, which is then perfectly boned to the matrix. In this presentation a new definition of equivalent inhomogeneity is discussed. It is based on Hill's energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical and cylindrical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective properties of randomly distributed unidirectional particulate composites. Properties of the equivalent cylindrical inhomogeneities are transversely isotropic, thus the method of conditional moments, which is a statistical method capable of handling anisotropy and randomness, has been employed for that purpose. Closed-form formulas for the effective stiffness tensor have been developed in all cases considered here. Comparisons with solutions available in the literature are made and other possible applications are discussed.</p></div>\",\"PeriodicalId\":74499,\"journal\":{\"name\":\"Procedia IUTAM\",\"volume\":\"21 \",\"pages\":\"Pages 63-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.038\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia IUTAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210983817300524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

引入等效非均匀性的概念,利用为无界面问题设计的技术分析具有界面相的复合材料的有效性能。基本思想是用一个具有恒定刚度张量的单一等效非均匀性取代非均匀性及其周围的间相,结合两者的性质,然后将其完美地绑定到矩阵上。本文讨论了等效非齐性的一个新定义。它基于希尔能量等效原理,应用于只包含原始非均匀性及其间相的问题。它比过去提出的定义更普遍,因为在概念上和实践上,它允许考虑各种形状和各种界面模型的非均质性。采用Gurtin-Murdoch材料表面模型和弹簧层模型两种界面相模型对球形和圆柱形颗粒进行了说明。由此产生的等效不均匀性随后用于确定随机分布的单向颗粒复合材料的有效性能。等效圆柱非均匀性的性质是横向各向同性的,因此采用了条件矩法,这是一种能够处理各向异性和随机性的统计方法。在这里考虑的所有情况下,有效刚度张量的封闭形式公式都已开发出来。与文献中可用的解决方案进行了比较,并讨论了其他可能的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Definition of Equivalent Inhomogeneity Applicable to Various Interphase Models and Various Shapes of Inhomogeneity

The concept of equivalent inhomogeneity has been introduced to analyze the effective properties of composites with interphases using techniques devised for problems without interphases. The basic idea is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity with constant stiffness tensor, combining properties of both, which is then perfectly boned to the matrix. In this presentation a new definition of equivalent inhomogeneity is discussed. It is based on Hill's energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical and cylindrical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective properties of randomly distributed unidirectional particulate composites. Properties of the equivalent cylindrical inhomogeneities are transversely isotropic, thus the method of conditional moments, which is a statistical method capable of handling anisotropy and randomness, has been employed for that purpose. Closed-form formulas for the effective stiffness tensor have been developed in all cases considered here. Comparisons with solutions available in the literature are made and other possible applications are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信