非光滑系统最大Lyapunov指数的同步估计

Michael Baumann , Remco I. Leine
{"title":"非光滑系统最大Lyapunov指数的同步估计","authors":"Michael Baumann ,&nbsp;Remco I. Leine","doi":"10.1016/j.piutam.2017.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>The maximal Lyapunov exponent of a nonsmooth system is the lower bound for the proportional feedback gain necessary to achieve full state synchronization. In this paper, we prove this statement for the general class of nonsmooth systems in the framework of measure differential inclusions. The results are used to estimate the maximal Lyapunov exponent using chaos synchronization, which is illustrated on an impact oscillator.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"20 ","pages":"Pages 26-33"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.005","citationCount":"7","resultStr":"{\"title\":\"Synchronization-based Estimation of the Maximal Lyapunov Exponent of Nonsmooth Systems\",\"authors\":\"Michael Baumann ,&nbsp;Remco I. Leine\",\"doi\":\"10.1016/j.piutam.2017.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The maximal Lyapunov exponent of a nonsmooth system is the lower bound for the proportional feedback gain necessary to achieve full state synchronization. In this paper, we prove this statement for the general class of nonsmooth systems in the framework of measure differential inclusions. The results are used to estimate the maximal Lyapunov exponent using chaos synchronization, which is illustrated on an impact oscillator.</p></div>\",\"PeriodicalId\":74499,\"journal\":{\"name\":\"Procedia IUTAM\",\"volume\":\"20 \",\"pages\":\"Pages 26-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.005\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia IUTAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210983817300068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

非光滑系统的最大李雅普诺夫指数是实现全状态同步所需的比例反馈增益的下界。本文在测度微分包含的框架下,对一般非光滑系统证明了这一命题。结果用于混沌同步估计最大李雅普诺夫指数,并在一个冲击振荡器上进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization-based Estimation of the Maximal Lyapunov Exponent of Nonsmooth Systems

The maximal Lyapunov exponent of a nonsmooth system is the lower bound for the proportional feedback gain necessary to achieve full state synchronization. In this paper, we prove this statement for the general class of nonsmooth systems in the framework of measure differential inclusions. The results are used to estimate the maximal Lyapunov exponent using chaos synchronization, which is illustrated on an impact oscillator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信