Miguel A. Sordo, Marilia C. de Souza, Alfonso Suárez-Llorens
{"title":"使用基尼均值差异检验可变性排序","authors":"Miguel A. Sordo, Marilia C. de Souza, Alfonso Suárez-Llorens","doi":"10.1016/j.stamet.2016.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we derive a measure of discrepancy based on the Gini’s mean difference to test the null hypothesis that two random variables, which are ordered in a variability-type stochastic order, are equally dispersive versus the alternative that one strictly dominates the other. We describe the test, evaluate its performance under a variety of situations and illustrate the procedure with an example using log returns of real data.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"32 ","pages":"Pages 63-76"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.03.001","citationCount":"3","resultStr":"{\"title\":\"Testing variability orderings by using Gini’s mean differences\",\"authors\":\"Miguel A. Sordo, Marilia C. de Souza, Alfonso Suárez-Llorens\",\"doi\":\"10.1016/j.stamet.2016.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we derive a measure of discrepancy based on the Gini’s mean difference to test the null hypothesis that two random variables, which are ordered in a variability-type stochastic order, are equally dispersive versus the alternative that one strictly dominates the other. We describe the test, evaluate its performance under a variety of situations and illustrate the procedure with an example using log returns of real data.</p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"32 \",\"pages\":\"Pages 63-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2016.03.001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312716000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
Testing variability orderings by using Gini’s mean differences
In this paper, we derive a measure of discrepancy based on the Gini’s mean difference to test the null hypothesis that two random variables, which are ordered in a variability-type stochastic order, are equally dispersive versus the alternative that one strictly dominates the other. We describe the test, evaluate its performance under a variety of situations and illustrate the procedure with an example using log returns of real data.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.