Cathy W.S. Chen , Mike K.P. So , Jessica C. Li , Songsak Sriboonchitta
{"title":"自回归条件负二项模型在过分散计数时间序列中的应用","authors":"Cathy W.S. Chen , Mike K.P. So , Jessica C. Li , Songsak Sriboonchitta","doi":"10.1016/j.stamet.2016.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Integer-valued time series analysis offers various applications in biomedical, financial, and environmental research. However, existing works usually assume no or constant over-dispersion. In this paper, we propose a new model for time series of counts, the autoregressive conditional </span>negative binomial model that has a time-varying conditional autoregressive mean function and heteroskedasticity. The location and scale parameters of the </span>negative binomial distribution are flexible in the proposed set-up, inducing dynamic over-dispersion. We adopt </span>Bayesian<span><span> methods with a Markov chain Monte Carlo sampling scheme to estimate model parameters and utilize deviance information criterion for model comparison. We conduct simulations to investigate the estimation performance of this sampling scheme for the proposed negative binomial model. To demonstrate the proposed approach in modelling time-varying over-dispersion, we consider two types of criminal incidents recorded by New South Wales (NSW) Police Force in Australia. We also fit the autoregressive conditional </span>Poisson model to these two datasets. Our results demonstrate that the proposed negative binomial model is preferable to the Poisson model.</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"31 ","pages":"Pages 73-90"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.02.001","citationCount":"26","resultStr":"{\"title\":\"Autoregressive conditional negative binomial model applied to over-dispersed time series of counts\",\"authors\":\"Cathy W.S. Chen , Mike K.P. So , Jessica C. Li , Songsak Sriboonchitta\",\"doi\":\"10.1016/j.stamet.2016.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Integer-valued time series analysis offers various applications in biomedical, financial, and environmental research. However, existing works usually assume no or constant over-dispersion. In this paper, we propose a new model for time series of counts, the autoregressive conditional </span>negative binomial model that has a time-varying conditional autoregressive mean function and heteroskedasticity. The location and scale parameters of the </span>negative binomial distribution are flexible in the proposed set-up, inducing dynamic over-dispersion. We adopt </span>Bayesian<span><span> methods with a Markov chain Monte Carlo sampling scheme to estimate model parameters and utilize deviance information criterion for model comparison. We conduct simulations to investigate the estimation performance of this sampling scheme for the proposed negative binomial model. To demonstrate the proposed approach in modelling time-varying over-dispersion, we consider two types of criminal incidents recorded by New South Wales (NSW) Police Force in Australia. We also fit the autoregressive conditional </span>Poisson model to these two datasets. Our results demonstrate that the proposed negative binomial model is preferable to the Poisson model.</span></p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"31 \",\"pages\":\"Pages 73-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2016.02.001\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312716000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
Autoregressive conditional negative binomial model applied to over-dispersed time series of counts
Integer-valued time series analysis offers various applications in biomedical, financial, and environmental research. However, existing works usually assume no or constant over-dispersion. In this paper, we propose a new model for time series of counts, the autoregressive conditional negative binomial model that has a time-varying conditional autoregressive mean function and heteroskedasticity. The location and scale parameters of the negative binomial distribution are flexible in the proposed set-up, inducing dynamic over-dispersion. We adopt Bayesian methods with a Markov chain Monte Carlo sampling scheme to estimate model parameters and utilize deviance information criterion for model comparison. We conduct simulations to investigate the estimation performance of this sampling scheme for the proposed negative binomial model. To demonstrate the proposed approach in modelling time-varying over-dispersion, we consider two types of criminal incidents recorded by New South Wales (NSW) Police Force in Australia. We also fit the autoregressive conditional Poisson model to these two datasets. Our results demonstrate that the proposed negative binomial model is preferable to the Poisson model.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.