{"title":"关于通过局部散度检验局部假设","authors":"G. Avlogiaris , A. Micheas , K. Zografos","doi":"10.1016/j.stamet.2016.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to propose procedures that test statistical hypotheses locally, that is, assess the validity of a model in a specific domain of the data. In this context, the one and two sample problems will be discussed. The proposed tests are based on local divergences which are defined in such a way as to quantify the divergence between probability distributions locally, in a specific area of the joint domain of the underlined models. The theoretical results are exemplified using simulations and two real datasets.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"31 ","pages":"Pages 20-42"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.01.003","citationCount":"6","resultStr":"{\"title\":\"On testing local hypotheses via local divergence\",\"authors\":\"G. Avlogiaris , A. Micheas , K. Zografos\",\"doi\":\"10.1016/j.stamet.2016.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to propose procedures that test statistical hypotheses locally, that is, assess the validity of a model in a specific domain of the data. In this context, the one and two sample problems will be discussed. The proposed tests are based on local divergences which are defined in such a way as to quantify the divergence between probability distributions locally, in a specific area of the joint domain of the underlined models. The theoretical results are exemplified using simulations and two real datasets.</p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"31 \",\"pages\":\"Pages 20-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2016.01.003\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312716000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
The aim of this paper is to propose procedures that test statistical hypotheses locally, that is, assess the validity of a model in a specific domain of the data. In this context, the one and two sample problems will be discussed. The proposed tests are based on local divergences which are defined in such a way as to quantify the divergence between probability distributions locally, in a specific area of the joint domain of the underlined models. The theoretical results are exemplified using simulations and two real datasets.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.