{"title":"在回归设置中对对数函数的近似","authors":"Tao Chen , Kenneth A. Couch","doi":"10.1016/j.stamet.2014.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a method of moments approach for dealing with censoring at zero for data expressed in levels when researchers would like to take logarithms. A Box–Cox transformation is employed. We explore this approach in the context of linear regression where both dependent and independent variables are censored. We contrast this method to two others, (1) dropping records of data containing censored values and (2) assuming normality for censored observations and the residuals in the model. Across the methods considered, where researchers are interested primarily in the slope parameter, estimation bias is consistently reduced using the method of moments approach.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"23 ","pages":"Pages 50-58"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2014.09.004","citationCount":"2","resultStr":"{\"title\":\"An approximation of logarithmic functions in the regression setting\",\"authors\":\"Tao Chen , Kenneth A. Couch\",\"doi\":\"10.1016/j.stamet.2014.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a method of moments approach for dealing with censoring at zero for data expressed in levels when researchers would like to take logarithms. A Box–Cox transformation is employed. We explore this approach in the context of linear regression where both dependent and independent variables are censored. We contrast this method to two others, (1) dropping records of data containing censored values and (2) assuming normality for censored observations and the residuals in the model. Across the methods considered, where researchers are interested primarily in the slope parameter, estimation bias is consistently reduced using the method of moments approach.</p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"23 \",\"pages\":\"Pages 50-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2014.09.004\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312714000720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312714000720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
An approximation of logarithmic functions in the regression setting
We consider a method of moments approach for dealing with censoring at zero for data expressed in levels when researchers would like to take logarithms. A Box–Cox transformation is employed. We explore this approach in the context of linear regression where both dependent and independent variables are censored. We contrast this method to two others, (1) dropping records of data containing censored values and (2) assuming normality for censored observations and the residuals in the model. Across the methods considered, where researchers are interested primarily in the slope parameter, estimation bias is consistently reduced using the method of moments approach.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.