广义渐进式混合滤波方案下指数参数的精确似然推断

Q Mathematics
Youngseuk Cho, Hokeun Sun, Kyeongjun Lee
{"title":"广义渐进式混合滤波方案下指数参数的精确似然推断","authors":"Youngseuk Cho,&nbsp;Hokeun Sun,&nbsp;Kyeongjun Lee","doi":"10.1016/j.stamet.2014.09.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recently, progressive hybrid censoring schemes have become quite popular in a life-testing problem and reliability analysis. However, the limitation of the progressive hybrid censoring scheme is that it cannot be applied when few failures occur before time </span><span><math><mi>T</mi></math></span><span><span><span>. In this article, we propose a generalized progressive hybrid censoring scheme, which allows us to observe a pre-specified number of failures. So, the certain number of failures and their survival times are provided all the time. We also derive the exact distribution of the maximum likelihood estimator (MLE) as well as </span>exact confidence interval (CI) for the parameter of the </span>exponential distribution under the generalized progressive hybrid censoring scheme. The results of simulation studies and real-life data analysis are included to illustrate the proposed method.</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"23 ","pages":"Pages 18-34"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2014.09.002","citationCount":"83","resultStr":"{\"title\":\"Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme\",\"authors\":\"Youngseuk Cho,&nbsp;Hokeun Sun,&nbsp;Kyeongjun Lee\",\"doi\":\"10.1016/j.stamet.2014.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Recently, progressive hybrid censoring schemes have become quite popular in a life-testing problem and reliability analysis. However, the limitation of the progressive hybrid censoring scheme is that it cannot be applied when few failures occur before time </span><span><math><mi>T</mi></math></span><span><span><span>. In this article, we propose a generalized progressive hybrid censoring scheme, which allows us to observe a pre-specified number of failures. So, the certain number of failures and their survival times are provided all the time. We also derive the exact distribution of the maximum likelihood estimator (MLE) as well as </span>exact confidence interval (CI) for the parameter of the </span>exponential distribution under the generalized progressive hybrid censoring scheme. The results of simulation studies and real-life data analysis are included to illustrate the proposed method.</span></p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"23 \",\"pages\":\"Pages 18-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2014.09.002\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312714000707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312714000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 83

摘要

近年来,渐进式混合滤波方案在寿命测试问题和可靠性分析中得到了广泛的应用。然而,渐进式混合审查方案的局限性在于它不能应用于在时间t之前发生很少故障的情况。在本文中,我们提出了一种广义的渐进式混合审查方案,它允许我们观察预先指定的故障数量。所以,一定数量的失败和它们的生存时间是一直提供的。我们还得到了广义渐进式混合滤波方案下指数分布参数的极大似然估计量(MLE)的精确分布和精确置信区间(CI)。仿真研究和实际数据分析的结果说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme

Recently, progressive hybrid censoring schemes have become quite popular in a life-testing problem and reliability analysis. However, the limitation of the progressive hybrid censoring scheme is that it cannot be applied when few failures occur before time T. In this article, we propose a generalized progressive hybrid censoring scheme, which allows us to observe a pre-specified number of failures. So, the certain number of failures and their survival times are provided all the time. We also derive the exact distribution of the maximum likelihood estimator (MLE) as well as exact confidence interval (CI) for the parameter of the exponential distribution under the generalized progressive hybrid censoring scheme. The results of simulation studies and real-life data analysis are included to illustrate the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信