Gilles R. Clément , John B. Charles , William H. Paloski
{"title":"重新审视深空任务中对人造重力的需求","authors":"Gilles R. Clément , John B. Charles , William H. Paloski","doi":"10.1016/j.reach.2016.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the past 15<!--> <!-->years, several group studies have identified the need to validate the role of artificial gravity (AG) as countermeasure to physiological deconditioning during long duration space missions. AG during centrifugation can be adjusted by varying the rotation rate of the vehicle or the distance of the habitat relative to the axis or rotation. These AG parameters have an impact on vehicle design and on human activities associated with the mission. Mission designers are presently reviewing the technologies and habitats necessary to maintain optimal health, safety, and performance of the crewmembers for missions to destinations beyond the Earth–Moon system. New health concerns during space flight have now emerged, such as the Vision Impairment and Intracranial Pressure (VIIP) syndrome, which appears to be caused by prolonged cranial fluid shifts that persist in the presence of currently available countermeasures. The notion of AG research therefore needed to be revisited to consider what role, if any, AG should play in these missions. This paper describes the engineering aspects of human spacecraft providing AG, what is known of the effects of AG on humans, and the research needed to answer the questions raised by mission designers.</p></div>","PeriodicalId":37501,"journal":{"name":"REACH","volume":"1 ","pages":"Pages 1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.reach.2016.01.001","citationCount":"14","resultStr":"{\"title\":\"Revisiting the needs for artificial gravity during deep space missions\",\"authors\":\"Gilles R. Clément , John B. Charles , William H. Paloski\",\"doi\":\"10.1016/j.reach.2016.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the past 15<!--> <!-->years, several group studies have identified the need to validate the role of artificial gravity (AG) as countermeasure to physiological deconditioning during long duration space missions. AG during centrifugation can be adjusted by varying the rotation rate of the vehicle or the distance of the habitat relative to the axis or rotation. These AG parameters have an impact on vehicle design and on human activities associated with the mission. Mission designers are presently reviewing the technologies and habitats necessary to maintain optimal health, safety, and performance of the crewmembers for missions to destinations beyond the Earth–Moon system. New health concerns during space flight have now emerged, such as the Vision Impairment and Intracranial Pressure (VIIP) syndrome, which appears to be caused by prolonged cranial fluid shifts that persist in the presence of currently available countermeasures. The notion of AG research therefore needed to be revisited to consider what role, if any, AG should play in these missions. This paper describes the engineering aspects of human spacecraft providing AG, what is known of the effects of AG on humans, and the research needed to answer the questions raised by mission designers.</p></div>\",\"PeriodicalId\":37501,\"journal\":{\"name\":\"REACH\",\"volume\":\"1 \",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.reach.2016.01.001\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"REACH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352309315300079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"REACH","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352309315300079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Revisiting the needs for artificial gravity during deep space missions
In the past 15 years, several group studies have identified the need to validate the role of artificial gravity (AG) as countermeasure to physiological deconditioning during long duration space missions. AG during centrifugation can be adjusted by varying the rotation rate of the vehicle or the distance of the habitat relative to the axis or rotation. These AG parameters have an impact on vehicle design and on human activities associated with the mission. Mission designers are presently reviewing the technologies and habitats necessary to maintain optimal health, safety, and performance of the crewmembers for missions to destinations beyond the Earth–Moon system. New health concerns during space flight have now emerged, such as the Vision Impairment and Intracranial Pressure (VIIP) syndrome, which appears to be caused by prolonged cranial fluid shifts that persist in the presence of currently available countermeasures. The notion of AG research therefore needed to be revisited to consider what role, if any, AG should play in these missions. This paper describes the engineering aspects of human spacecraft providing AG, what is known of the effects of AG on humans, and the research needed to answer the questions raised by mission designers.
期刊介绍:
The Official Human Space Exploration Review Journal of the International Academy of Astronautics (IAA) and the International Astronautical Federation (IAF) REACH – Reviews in Human Space Exploration is an international review journal that covers the entire field of human space exploration, including: -Human Space Exploration Mission Scenarios -Robotic Space Exploration Missions (Preparing or Supporting Human Missions) -Commercial Human Spaceflight -Space Habitation and Environmental Health -Space Physiology, Psychology, Medicine and Environmental Health -Space Radiation and Radiation Biology -Exo- and Astrobiology -Search for Extraterrestrial Intelligence (SETI) -Spin-off Applications from Human Spaceflight -Benefits from Space-Based Research for Health on Earth -Earth Observation for Agriculture, Climate Monitoring, Disaster Mitigation -Terrestrial Applications of Space Life Sciences Developments -Extreme Environments REACH aims to meet the needs of readers from academia, industry, and government by publishing comprehensive overviews of the science of human and robotic space exploration, life sciences research in space, and beneficial terrestrial applications that are derived from spaceflight. Special emphasis will be put on summarizing the most important recent developments and challenges in each of the covered fields, and on making published articles legible for a non-specialist audience. Authors can also submit non-solicited review articles. Please note that original research articles are not published in REACH. The Journal plans to publish four issues per year containing six to eight review articles each.