蓬塔朗戈斯特拉(西班牙)A coruna外港西码头设计和建造的创新方面

IF 0.2 Q4 WATER RESOURCES
M. Santos , A. Corredor , E. Maciñeira , V. Bajo , M.E. Gómez-Martín , J.R. Medina
{"title":"蓬塔朗戈斯特拉(西班牙)A coruna外港西码头设计和建造的创新方面","authors":"M. Santos ,&nbsp;A. Corredor ,&nbsp;E. Maciñeira ,&nbsp;V. Bajo ,&nbsp;M.E. Gómez-Martín ,&nbsp;J.R. Medina","doi":"10.1016/j.riba.2016.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>This article describes the innovative aspects in design and construction of the western breakwater of the outer port at Punta Langosteira (A Coruña, Spain). The secondary breakwater is formed by the south breakwater (1.<sup>st</sup> phase) and the western breakwater (2.<sup>nd</sup> phase), currently under construction, and it is intended to complete the shelter provided by the main breakwater of the outer port of A Coruña and to ensure high operability of the new port facilities, as well as to contain the movement of the beaches to the west of the port. The bidding process, which permitted variations to the preliminary design, favors innovation, allowing for a variety of solutions based on the use of different armor units, and cubipods were finally selected for the main armor layer. The 1.35<!--> <!-->km long secondary breakwater is protected by a single-layer 25 t and 30 t cubipod armor in the trunk, and a double-layer 45 t cubipod armor in the roundhead. The alternative cubipod solution allows for a breakwater which withstands wave climates higher than the defined limit state (H<sub>s</sub>=8.75 m in the trunk) and significantly reduces the economic cost and the concrete consumption. In order to optimize and validate the alternative solution, 3D hydraulic stability and overtopping test were performed with 1/51 scale, similar to those made to justify the preliminary design by the port authority. 1,360 cubipod units (15- and 25-tonne) from the southern and northern breakwaters, which are now sheltered by the new breakwater, have been re-used at the western breakwater. A transition single- to double-layer armor has been constructed, with opposite fitting, increasing progressively the thickness of the filter layer to maintain a homogeneous exterior surface of the armor when modifying the armor thickness.</p></div>","PeriodicalId":42124,"journal":{"name":"RIBAGUA-Revista Iberoamericana del Agua","volume":"3 2","pages":"Pages 89-100"},"PeriodicalIF":0.2000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.riba.2016.07.005","citationCount":"1","resultStr":"{\"title\":\"Aspectos innovadores en el diseño y construcción del dique Oeste en el puerto exterior de A Coruña en Punta Langosteira (España)\",\"authors\":\"M. Santos ,&nbsp;A. Corredor ,&nbsp;E. Maciñeira ,&nbsp;V. Bajo ,&nbsp;M.E. Gómez-Martín ,&nbsp;J.R. Medina\",\"doi\":\"10.1016/j.riba.2016.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article describes the innovative aspects in design and construction of the western breakwater of the outer port at Punta Langosteira (A Coruña, Spain). The secondary breakwater is formed by the south breakwater (1.<sup>st</sup> phase) and the western breakwater (2.<sup>nd</sup> phase), currently under construction, and it is intended to complete the shelter provided by the main breakwater of the outer port of A Coruña and to ensure high operability of the new port facilities, as well as to contain the movement of the beaches to the west of the port. The bidding process, which permitted variations to the preliminary design, favors innovation, allowing for a variety of solutions based on the use of different armor units, and cubipods were finally selected for the main armor layer. The 1.35<!--> <!-->km long secondary breakwater is protected by a single-layer 25 t and 30 t cubipod armor in the trunk, and a double-layer 45 t cubipod armor in the roundhead. The alternative cubipod solution allows for a breakwater which withstands wave climates higher than the defined limit state (H<sub>s</sub>=8.75 m in the trunk) and significantly reduces the economic cost and the concrete consumption. In order to optimize and validate the alternative solution, 3D hydraulic stability and overtopping test were performed with 1/51 scale, similar to those made to justify the preliminary design by the port authority. 1,360 cubipod units (15- and 25-tonne) from the southern and northern breakwaters, which are now sheltered by the new breakwater, have been re-used at the western breakwater. A transition single- to double-layer armor has been constructed, with opposite fitting, increasing progressively the thickness of the filter layer to maintain a homogeneous exterior surface of the armor when modifying the armor thickness.</p></div>\",\"PeriodicalId\":42124,\"journal\":{\"name\":\"RIBAGUA-Revista Iberoamericana del Agua\",\"volume\":\"3 2\",\"pages\":\"Pages 89-100\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.riba.2016.07.005\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIBAGUA-Revista Iberoamericana del Agua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2386378116300214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIBAGUA-Revista Iberoamericana del Agua","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2386378116300214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了Punta langgosteira (A Coruña,西班牙)外港西部防波堤设计和施工的创新方面。次级防波堤由南防波堤(1)组成。第一期)和西部防波堤(第二期)。目前正在建造的第2阶段),其目的是完成A外港Coruña主要防波堤提供的庇护,并确保新港口设施的高度可操作性,以及遏制海滩向港口西部的移动。投标过程允许对初步设计进行变更,有利于创新,允许基于使用不同装甲单位的各种解决方案,最终选择三足架作为主要装甲层。1.35公里长的二级防波堤在主干上采用单层25吨和30吨立方脚装甲,在圆头采用双层45吨立方脚装甲。另一种立方体解决方案允许防波堤承受高于规定极限状态的波浪气候(主干Hs=8.75 m),并显着降低经济成本和混凝土消耗。为了优化和验证替代方案,以1/51的比例进行了3D水力稳定性和过顶测试,类似于港务局为证明初步设计所做的测试。来自南部和北部防波堤的1,360个立方体单元(15吨和25吨)现在被新的防波堤所保护,已在西部防波堤重新使用。构造了一种过渡的单层到双层装甲,与相反的拟合,在修改装甲厚度时,逐步增加过滤层的厚度以保持装甲的均匀外表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspectos innovadores en el diseño y construcción del dique Oeste en el puerto exterior de A Coruña en Punta Langosteira (España)

This article describes the innovative aspects in design and construction of the western breakwater of the outer port at Punta Langosteira (A Coruña, Spain). The secondary breakwater is formed by the south breakwater (1.st phase) and the western breakwater (2.nd phase), currently under construction, and it is intended to complete the shelter provided by the main breakwater of the outer port of A Coruña and to ensure high operability of the new port facilities, as well as to contain the movement of the beaches to the west of the port. The bidding process, which permitted variations to the preliminary design, favors innovation, allowing for a variety of solutions based on the use of different armor units, and cubipods were finally selected for the main armor layer. The 1.35 km long secondary breakwater is protected by a single-layer 25 t and 30 t cubipod armor in the trunk, and a double-layer 45 t cubipod armor in the roundhead. The alternative cubipod solution allows for a breakwater which withstands wave climates higher than the defined limit state (Hs=8.75 m in the trunk) and significantly reduces the economic cost and the concrete consumption. In order to optimize and validate the alternative solution, 3D hydraulic stability and overtopping test were performed with 1/51 scale, similar to those made to justify the preliminary design by the port authority. 1,360 cubipod units (15- and 25-tonne) from the southern and northern breakwaters, which are now sheltered by the new breakwater, have been re-used at the western breakwater. A transition single- to double-layer armor has been constructed, with opposite fitting, increasing progressively the thickness of the filter layer to maintain a homogeneous exterior surface of the armor when modifying the armor thickness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
42 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信