气候变化不确定性下作物规划问题的鲁棒时间优化

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
M. Randall , J. Montgomery , A. Lewis
{"title":"气候变化不确定性下作物规划问题的鲁棒时间优化","authors":"M. Randall ,&nbsp;J. Montgomery ,&nbsp;A. Lewis","doi":"10.1016/j.orp.2021.100219","DOIUrl":null,"url":null,"abstract":"<div><p>Considering a temporal dimension allows for the delivery of rolling solutions to complex real-world problems. Moving forward in time brings uncertainty, and large margins for potential error in solutions. For the multi-year crop planning problem, the largest uncertainty is how the climate will change over coming decades. The innovation this paper presents are novel methods that allow the solver to produce feasible solutions under all climate models tested, simultaneously. Three new measures of robustness are introduced and evaluated. The highly robust solutions are shown to vary little across different climate change projections, maintaining consistent net revenue and environmental flow deficits.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"9 ","pages":"Article 100219"},"PeriodicalIF":3.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716021000312/pdfft?md5=8305f0674132278eade0f535d2f219ef&pid=1-s2.0-S2214716021000312-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Robust temporal optimisation for a crop planning problem under climate change uncertainty\",\"authors\":\"M. Randall ,&nbsp;J. Montgomery ,&nbsp;A. Lewis\",\"doi\":\"10.1016/j.orp.2021.100219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Considering a temporal dimension allows for the delivery of rolling solutions to complex real-world problems. Moving forward in time brings uncertainty, and large margins for potential error in solutions. For the multi-year crop planning problem, the largest uncertainty is how the climate will change over coming decades. The innovation this paper presents are novel methods that allow the solver to produce feasible solutions under all climate models tested, simultaneously. Three new measures of robustness are introduced and evaluated. The highly robust solutions are shown to vary little across different climate change projections, maintaining consistent net revenue and environmental flow deficits.</p></div>\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"9 \",\"pages\":\"Article 100219\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214716021000312/pdfft?md5=8305f0674132278eade0f535d2f219ef&pid=1-s2.0-S2214716021000312-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716021000312\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716021000312","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 6

摘要

考虑时间维度可以为复杂的现实问题提供滚动解决方案。及时向前推进会带来不确定性,解决方案中可能出现的错误也有很大的余地。对于多年作物规划问题,最大的不确定性是未来几十年气候将如何变化。本文提出的创新是允许求解器同时在所有测试的气候模型下产生可行解的新方法。介绍并评价了三种新的鲁棒性度量。高度稳健的解决方案在不同的气候变化预测中变化不大,保持了一致的净收入和环境流量赤字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust temporal optimisation for a crop planning problem under climate change uncertainty

Considering a temporal dimension allows for the delivery of rolling solutions to complex real-world problems. Moving forward in time brings uncertainty, and large margins for potential error in solutions. For the multi-year crop planning problem, the largest uncertainty is how the climate will change over coming decades. The innovation this paper presents are novel methods that allow the solver to produce feasible solutions under all climate models tested, simultaneously. Three new measures of robustness are introduced and evaluated. The highly robust solutions are shown to vary little across different climate change projections, maintaining consistent net revenue and environmental flow deficits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信