Yu. D. Filatov, V. I. Sidorko, S. V. Sokhan’, S. V. Kovalev, A. Y. Boyarintsev, V. A. Kovalev, O. Y. Yurchyshyn
{"title":"高分子光学材料光电元件抛光表面粗糙度研究","authors":"Yu. D. Filatov, V. I. Sidorko, S. V. Sokhan’, S. V. Kovalev, A. Y. Boyarintsev, V. A. Kovalev, O. Y. Yurchyshyn","doi":"10.3103/S1063457623010045","DOIUrl":null,"url":null,"abstract":"<p>As established from the results of studying the mechanism of nanorelief formation of the treated surface during polishing of polymer optical materials by means of dispersed systems based on micro- and nanoparticle polishing powders, roughness parameters <i>Ra</i>, <i>Rq</i>, and <i>R</i><sub>max</sub> increase linearly with an increase in the size of the sludge particles and decrease with an increase in the transfer energy. It is shown that they substantially increase with a decrease in the spectral separation between the processed material and the polishing powder particle and are extremely dependent on the dielectric constant differences between the processed material, the polishing powder, and the dispersed system. It is found that the roughness parameters of the treated surface decrease exponentially with an increase in the frequency index of Förster resonance energy transfer (FRET) efficiency and increase linearly with an increase in the time index of FRET efficiency. In the case of an increase in the <i>Q</i> factor of the resonator formed by the surfaces of the processed material and the polishing tool, the roughness parameters of the polished surfaces of parts made of polymeric optical materials increase linearly.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"45 1","pages":"54 - 64"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Roughness of Polished Surfaces of Optoelectronic Components Made of Polymeric Optical Materials\",\"authors\":\"Yu. D. Filatov, V. I. Sidorko, S. V. Sokhan’, S. V. Kovalev, A. Y. Boyarintsev, V. A. Kovalev, O. Y. Yurchyshyn\",\"doi\":\"10.3103/S1063457623010045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As established from the results of studying the mechanism of nanorelief formation of the treated surface during polishing of polymer optical materials by means of dispersed systems based on micro- and nanoparticle polishing powders, roughness parameters <i>Ra</i>, <i>Rq</i>, and <i>R</i><sub>max</sub> increase linearly with an increase in the size of the sludge particles and decrease with an increase in the transfer energy. It is shown that they substantially increase with a decrease in the spectral separation between the processed material and the polishing powder particle and are extremely dependent on the dielectric constant differences between the processed material, the polishing powder, and the dispersed system. It is found that the roughness parameters of the treated surface decrease exponentially with an increase in the frequency index of Förster resonance energy transfer (FRET) efficiency and increase linearly with an increase in the time index of FRET efficiency. In the case of an increase in the <i>Q</i> factor of the resonator formed by the surfaces of the processed material and the polishing tool, the roughness parameters of the polished surfaces of parts made of polymeric optical materials increase linearly.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"45 1\",\"pages\":\"54 - 64\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457623010045\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457623010045","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Roughness of Polished Surfaces of Optoelectronic Components Made of Polymeric Optical Materials
As established from the results of studying the mechanism of nanorelief formation of the treated surface during polishing of polymer optical materials by means of dispersed systems based on micro- and nanoparticle polishing powders, roughness parameters Ra, Rq, and Rmax increase linearly with an increase in the size of the sludge particles and decrease with an increase in the transfer energy. It is shown that they substantially increase with a decrease in the spectral separation between the processed material and the polishing powder particle and are extremely dependent on the dielectric constant differences between the processed material, the polishing powder, and the dispersed system. It is found that the roughness parameters of the treated surface decrease exponentially with an increase in the frequency index of Förster resonance energy transfer (FRET) efficiency and increase linearly with an increase in the time index of FRET efficiency. In the case of an increase in the Q factor of the resonator formed by the surfaces of the processed material and the polishing tool, the roughness parameters of the polished surfaces of parts made of polymeric optical materials increase linearly.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.