Beibei Li , Jun Yue , Shixiang Jia , Qing Wang , Zhenbo Li , Zhenzhong Li
{"title":"斑胸蛇体表异常特征的识别","authors":"Beibei Li , Jun Yue , Shixiang Jia , Qing Wang , Zhenbo Li , Zhenzhong Li","doi":"10.1016/j.inpa.2021.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment. In this paper, an advanced neural network model to identify the characteristics of the oplegnathus punctatus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set. First of all, a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effectiveness of the method in this paper. And then, the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set, which combines the edge features extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model. Finally, an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure. The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved, which reach 98.55% and 69.18%.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 575-585"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.04.009","citationCount":"2","resultStr":"{\"title\":\"Recognition of abnormal body surface characteristics of oplegnathus punctatus\",\"authors\":\"Beibei Li , Jun Yue , Shixiang Jia , Qing Wang , Zhenbo Li , Zhenzhong Li\",\"doi\":\"10.1016/j.inpa.2021.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment. In this paper, an advanced neural network model to identify the characteristics of the oplegnathus punctatus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set. First of all, a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effectiveness of the method in this paper. And then, the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set, which combines the edge features extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model. Finally, an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure. The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved, which reach 98.55% and 69.18%.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"9 4\",\"pages\":\"Pages 575-585\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.inpa.2021.04.009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recognition of abnormal body surface characteristics of oplegnathus punctatus
To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment. In this paper, an advanced neural network model to identify the characteristics of the oplegnathus punctatus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set. First of all, a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effectiveness of the method in this paper. And then, the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set, which combines the edge features extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model. Finally, an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure. The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved, which reach 98.55% and 69.18%.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining