Thomas Kleinert , Julian Manns , Martin Schmidt , Dieter Weninger
{"title":"求解线性双层优化问题","authors":"Thomas Kleinert , Julian Manns , Martin Schmidt , Dieter Weninger","doi":"10.1016/j.ejco.2021.100020","DOIUrl":null,"url":null,"abstract":"<div><p>Linear bilevel optimization problems are known to be strongly NP-hard and the computational techniques to solve these problems are often motivated by techniques from single-level mixed-integer optimization. Thus, during the last years and decades many branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other hand, there is almost no literature on presolving linear bilevel problems although presolve is a very important ingredient in state-of-the-art mixed-integer optimization solvers. In this paper, we carry over standard presolve techniques from single-level optimization to bilevel problems and show that this needs to be done with great caution since a naive application of well-known techniques does often not lead to correctly presolved bilevel models. Our numerical study shows that presolve can also be very beneficial for bilevel problems but also highlights that these methods have a more heterogeneous effect on the solution process compared to what is known from single-level optimization. As a side result, our numerical experiments reveal that there is an urgent need for better and more heterogeneous test instance libraries to further propel the field of computational bilevel optimization.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100020"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440621001477/pdfft?md5=9e7ad6370cbef2e71f6e19e0e4213468&pid=1-s2.0-S2192440621001477-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Presolving linear bilevel optimization problems\",\"authors\":\"Thomas Kleinert , Julian Manns , Martin Schmidt , Dieter Weninger\",\"doi\":\"10.1016/j.ejco.2021.100020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear bilevel optimization problems are known to be strongly NP-hard and the computational techniques to solve these problems are often motivated by techniques from single-level mixed-integer optimization. Thus, during the last years and decades many branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other hand, there is almost no literature on presolving linear bilevel problems although presolve is a very important ingredient in state-of-the-art mixed-integer optimization solvers. In this paper, we carry over standard presolve techniques from single-level optimization to bilevel problems and show that this needs to be done with great caution since a naive application of well-known techniques does often not lead to correctly presolved bilevel models. Our numerical study shows that presolve can also be very beneficial for bilevel problems but also highlights that these methods have a more heterogeneous effect on the solution process compared to what is known from single-level optimization. As a side result, our numerical experiments reveal that there is an urgent need for better and more heterogeneous test instance libraries to further propel the field of computational bilevel optimization.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"9 \",\"pages\":\"Article 100020\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001477/pdfft?md5=9e7ad6370cbef2e71f6e19e0e4213468&pid=1-s2.0-S2192440621001477-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Linear bilevel optimization problems are known to be strongly NP-hard and the computational techniques to solve these problems are often motivated by techniques from single-level mixed-integer optimization. Thus, during the last years and decades many branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other hand, there is almost no literature on presolving linear bilevel problems although presolve is a very important ingredient in state-of-the-art mixed-integer optimization solvers. In this paper, we carry over standard presolve techniques from single-level optimization to bilevel problems and show that this needs to be done with great caution since a naive application of well-known techniques does often not lead to correctly presolved bilevel models. Our numerical study shows that presolve can also be very beneficial for bilevel problems but also highlights that these methods have a more heterogeneous effect on the solution process compared to what is known from single-level optimization. As a side result, our numerical experiments reveal that there is an urgent need for better and more heterogeneous test instance libraries to further propel the field of computational bilevel optimization.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.