朝着一个强大的和负担得起的自动气象站

Q1 Economics, Econometrics and Finance
Mary Nsabagwa , Maximus Byamukama , Emmanuel Kondela , Julianne Sansa Otim
{"title":"朝着一个强大的和负担得起的自动气象站","authors":"Mary Nsabagwa ,&nbsp;Maximus Byamukama ,&nbsp;Emmanuel Kondela ,&nbsp;Julianne Sansa Otim","doi":"10.1016/j.deveng.2018.100040","DOIUrl":null,"url":null,"abstract":"<div><p>The frequency and severity of extreme weather events have increased over the last 30 years, making predictability of weather a challenge. Weather extreme events often cause adverse impacts to lives and property. Thus, accurate and timely provision of weather data is becoming crucial to improve the skill of weather prediction and to strengthen resilience to the impacts of the adverse weather conditions. Uganda and many developing countries have challenges in acquiring accurate and timely weather data due to their sparse weather observation networks. The sparse weather observation networks are in part attributed to the high cost of acquiring an Automatic Weather Station (AWS) and limited funding to national meteorological services of the respective countries. The inability of developing countries to manufacture their own AWSs leads to high recurring costs accruing from importation and maintenance. In this study, we propose an AWS based on Wireless Sensor Networks. We plan to design three generations of the AWS prototype, the first being the subject of this paper. The purpose of this paper is therefore to evaluate the first-generation AWS prototype and to propose improvements for the second-generation, based on needs and requirements. Results from the AWS prototype data suggest improving non-functional requirements such as reliability, data accuracy, power consumption and data transmission in order to have an operational AWS. The non-functional requirements combined with cost reduction produces a robust and affordable AWS. Therefore, developing countries like Uganda will be able to acquire the AWSs in reasonable quantities, hence improvement in weather forecasts.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"4 ","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.deveng.2018.100040","citationCount":"24","resultStr":"{\"title\":\"Towards a robust and affordable Automatic Weather Station\",\"authors\":\"Mary Nsabagwa ,&nbsp;Maximus Byamukama ,&nbsp;Emmanuel Kondela ,&nbsp;Julianne Sansa Otim\",\"doi\":\"10.1016/j.deveng.2018.100040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The frequency and severity of extreme weather events have increased over the last 30 years, making predictability of weather a challenge. Weather extreme events often cause adverse impacts to lives and property. Thus, accurate and timely provision of weather data is becoming crucial to improve the skill of weather prediction and to strengthen resilience to the impacts of the adverse weather conditions. Uganda and many developing countries have challenges in acquiring accurate and timely weather data due to their sparse weather observation networks. The sparse weather observation networks are in part attributed to the high cost of acquiring an Automatic Weather Station (AWS) and limited funding to national meteorological services of the respective countries. The inability of developing countries to manufacture their own AWSs leads to high recurring costs accruing from importation and maintenance. In this study, we propose an AWS based on Wireless Sensor Networks. We plan to design three generations of the AWS prototype, the first being the subject of this paper. The purpose of this paper is therefore to evaluate the first-generation AWS prototype and to propose improvements for the second-generation, based on needs and requirements. Results from the AWS prototype data suggest improving non-functional requirements such as reliability, data accuracy, power consumption and data transmission in order to have an operational AWS. The non-functional requirements combined with cost reduction produces a robust and affordable AWS. Therefore, developing countries like Uganda will be able to acquire the AWSs in reasonable quantities, hence improvement in weather forecasts.</p></div>\",\"PeriodicalId\":37901,\"journal\":{\"name\":\"Development Engineering\",\"volume\":\"4 \",\"pages\":\"Article 100040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.deveng.2018.100040\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352728518300617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728518300617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 24

摘要

在过去的30年里,极端天气事件的频率和严重程度都有所增加,这给天气的可预测性带来了挑战。极端天气事件经常对生命和财产造成不利影响。因此,准确和及时地提供天气数据对提高天气预报技能和加强对恶劣天气影响的应变能力变得至关重要。乌干达和许多发展中国家由于其稀疏的天气观测网络,在获取准确和及时的天气数据方面面临挑战。天气观测网稀疏的部分原因是购置自动气象站(AWS)的成本高,以及各国国家气象部门的资金有限。发展中国家没有能力制造自己的aws,导致进口和维护的经常性成本很高。在这项研究中,我们提出了一个基于无线传感器网络的AWS。我们计划设计三代AWS原型,第一代是本文的主题。因此,本文的目的是评估第一代AWS原型,并根据需求和要求对第二代AWS原型提出改进建议。AWS原型数据的结果建议改进非功能需求,如可靠性、数据准确性、功耗和数据传输,以便拥有可运行的AWS。非功能性需求与成本降低相结合,产生了健壮且可负担的AWS。因此,像乌干达这样的发展中国家将能够获得合理数量的AWSs,从而改善天气预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a robust and affordable Automatic Weather Station

The frequency and severity of extreme weather events have increased over the last 30 years, making predictability of weather a challenge. Weather extreme events often cause adverse impacts to lives and property. Thus, accurate and timely provision of weather data is becoming crucial to improve the skill of weather prediction and to strengthen resilience to the impacts of the adverse weather conditions. Uganda and many developing countries have challenges in acquiring accurate and timely weather data due to their sparse weather observation networks. The sparse weather observation networks are in part attributed to the high cost of acquiring an Automatic Weather Station (AWS) and limited funding to national meteorological services of the respective countries. The inability of developing countries to manufacture their own AWSs leads to high recurring costs accruing from importation and maintenance. In this study, we propose an AWS based on Wireless Sensor Networks. We plan to design three generations of the AWS prototype, the first being the subject of this paper. The purpose of this paper is therefore to evaluate the first-generation AWS prototype and to propose improvements for the second-generation, based on needs and requirements. Results from the AWS prototype data suggest improving non-functional requirements such as reliability, data accuracy, power consumption and data transmission in order to have an operational AWS. The non-functional requirements combined with cost reduction produces a robust and affordable AWS. Therefore, developing countries like Uganda will be able to acquire the AWSs in reasonable quantities, hence improvement in weather forecasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Engineering
Development Engineering Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍: Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信