Guigonan Serge Adjognon , Alexis Rivera-Ballesteros , Daan van Soest
{"title":"用于撒哈拉以南非洲旱地森林保护的基于卫星的树木覆盖制图:在布基纳法索宪报公布的森林中的应用","authors":"Guigonan Serge Adjognon , Alexis Rivera-Ballesteros , Daan van Soest","doi":"10.1016/j.deveng.2018.100039","DOIUrl":null,"url":null,"abstract":"<div><p>While monitoring the effectiveness of forest conservation programs requires accurate data on (changes in) forest cover, many countries still lack the ability to map local forest inventory, especially in the drylands of Africa where forest areas are very sparsely covered. In this paper, we present a high resolution tree cover estimation of twelve gazetted forests in Burkina Faso using Random Forest-based supervised classification and Sentinel-2 satellite imagery sensed between March and April 2016. The methodology relies on ground truth sample points labeled manually over 10-m resolution images displaying a composite of near infrared (NIR), red and green bands extracted from Sentinel-2 multi-spectral satellite data to estimate tree cover with an average balanced accuracy rate of 80 percent. The output is a collection of rasters with binary values representing the combination of 10, and down-sampled 20 and 60-m bands indicating an estimate of the existence of trees or lack thereof, usable as a baseline for deforestation monitoring.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"4 ","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.deveng.2018.100039","citationCount":"17","resultStr":"{\"title\":\"Satellite-based tree cover mapping for forest conservation in the drylands of Sub Saharan Africa (SSA): Application to Burkina Faso gazetted forests\",\"authors\":\"Guigonan Serge Adjognon , Alexis Rivera-Ballesteros , Daan van Soest\",\"doi\":\"10.1016/j.deveng.2018.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While monitoring the effectiveness of forest conservation programs requires accurate data on (changes in) forest cover, many countries still lack the ability to map local forest inventory, especially in the drylands of Africa where forest areas are very sparsely covered. In this paper, we present a high resolution tree cover estimation of twelve gazetted forests in Burkina Faso using Random Forest-based supervised classification and Sentinel-2 satellite imagery sensed between March and April 2016. The methodology relies on ground truth sample points labeled manually over 10-m resolution images displaying a composite of near infrared (NIR), red and green bands extracted from Sentinel-2 multi-spectral satellite data to estimate tree cover with an average balanced accuracy rate of 80 percent. The output is a collection of rasters with binary values representing the combination of 10, and down-sampled 20 and 60-m bands indicating an estimate of the existence of trees or lack thereof, usable as a baseline for deforestation monitoring.</p></div>\",\"PeriodicalId\":37901,\"journal\":{\"name\":\"Development Engineering\",\"volume\":\"4 \",\"pages\":\"Article 100039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.deveng.2018.100039\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352728517300891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728517300891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Satellite-based tree cover mapping for forest conservation in the drylands of Sub Saharan Africa (SSA): Application to Burkina Faso gazetted forests
While monitoring the effectiveness of forest conservation programs requires accurate data on (changes in) forest cover, many countries still lack the ability to map local forest inventory, especially in the drylands of Africa where forest areas are very sparsely covered. In this paper, we present a high resolution tree cover estimation of twelve gazetted forests in Burkina Faso using Random Forest-based supervised classification and Sentinel-2 satellite imagery sensed between March and April 2016. The methodology relies on ground truth sample points labeled manually over 10-m resolution images displaying a composite of near infrared (NIR), red and green bands extracted from Sentinel-2 multi-spectral satellite data to estimate tree cover with an average balanced accuracy rate of 80 percent. The output is a collection of rasters with binary values representing the combination of 10, and down-sampled 20 and 60-m bands indicating an estimate of the existence of trees or lack thereof, usable as a baseline for deforestation monitoring.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."