推广节能电视,扩大离网供电

Q1 Economics, Econometrics and Finance
Won Young Park, Amol A. Phadke
{"title":"推广节能电视,扩大离网供电","authors":"Won Young Park,&nbsp;Amol A. Phadke","doi":"10.1016/j.deveng.2017.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Even though they dominate the global television (TV) market, light-emitting diode backlit liquid crystal display (LED-LCD) TVs have received little attention for use with off-grid household-scale renewable energy systems, primarily because of high up-front costs. However, technological advances and price declines mean that these TVs can now provide the same level of electricity service as standard LED-LCD TVs offer but at lower total energy cost. Moreover, LED-LCD TVs are inherently direct-current (DC)-powered devices and therefore well suited for use with off-grid solar home systems. We estimate that DC-powered energy-efficient LED-LCD TVs can decrease the retail purchase price of solar home systems by about 25% by allowing use of 50% smaller photovoltaics and battery capacities than would be needed for the same energy system to power a standard LED-LCD TV. We recommend that policies such as awards, bulk procurement, incentives, and energy labels be considered to facilitate the adoption of these energy-efficient TVs in off-grid settings.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"2 ","pages":"Pages 107-113"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.deveng.2017.07.002","citationCount":"13","resultStr":"{\"title\":\"Adoption of energy-efficient televisions for expanded off-grid electricity service\",\"authors\":\"Won Young Park,&nbsp;Amol A. Phadke\",\"doi\":\"10.1016/j.deveng.2017.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Even though they dominate the global television (TV) market, light-emitting diode backlit liquid crystal display (LED-LCD) TVs have received little attention for use with off-grid household-scale renewable energy systems, primarily because of high up-front costs. However, technological advances and price declines mean that these TVs can now provide the same level of electricity service as standard LED-LCD TVs offer but at lower total energy cost. Moreover, LED-LCD TVs are inherently direct-current (DC)-powered devices and therefore well suited for use with off-grid solar home systems. We estimate that DC-powered energy-efficient LED-LCD TVs can decrease the retail purchase price of solar home systems by about 25% by allowing use of 50% smaller photovoltaics and battery capacities than would be needed for the same energy system to power a standard LED-LCD TV. We recommend that policies such as awards, bulk procurement, incentives, and energy labels be considered to facilitate the adoption of these energy-efficient TVs in off-grid settings.</p></div>\",\"PeriodicalId\":37901,\"journal\":{\"name\":\"Development Engineering\",\"volume\":\"2 \",\"pages\":\"Pages 107-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.deveng.2017.07.002\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352728516300057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728516300057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 13

摘要

尽管发光二极管背光液晶显示器(LED-LCD)电视在全球电视市场占据主导地位,但在离网家庭可再生能源系统中使用时却很少受到关注,主要原因是前期成本高。然而,技术的进步和价格的下降意味着这些电视现在可以提供与标准LED-LCD电视相同水平的电力服务,但总能源成本更低。此外,LED-LCD电视本质上是直流(DC)供电设备,因此非常适合与离网太阳能家庭系统一起使用。我们估计,直流供电的节能LED-LCD电视可以使家用太阳能系统的零售购买价格降低约25%,因为与标准LED-LCD电视所需的相同能源系统相比,使用的光伏电池和电池容量要小50%。我们建议考虑奖励、批量采购、激励和能源标签等政策,以促进这些节能电视在离网环境中的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adoption of energy-efficient televisions for expanded off-grid electricity service

Even though they dominate the global television (TV) market, light-emitting diode backlit liquid crystal display (LED-LCD) TVs have received little attention for use with off-grid household-scale renewable energy systems, primarily because of high up-front costs. However, technological advances and price declines mean that these TVs can now provide the same level of electricity service as standard LED-LCD TVs offer but at lower total energy cost. Moreover, LED-LCD TVs are inherently direct-current (DC)-powered devices and therefore well suited for use with off-grid solar home systems. We estimate that DC-powered energy-efficient LED-LCD TVs can decrease the retail purchase price of solar home systems by about 25% by allowing use of 50% smaller photovoltaics and battery capacities than would be needed for the same energy system to power a standard LED-LCD TV. We recommend that policies such as awards, bulk procurement, incentives, and energy labels be considered to facilitate the adoption of these energy-efficient TVs in off-grid settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Engineering
Development Engineering Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍: Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信