{"title":"随机协同进化网络的同步与固定控制","authors":"Fabio Della Rossa , Pietro De Lellis","doi":"10.1016/j.arcontrol.2022.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Network dynamical systems are often characterized by the interlaced evolution of the node and edge dynamics, which are driven by both deterministic and stochastic factors. This manuscript offers a general mathematical model of coevolving network, which associates a state variable to each node and edge in the network, and describes their evolution through coupled stochastic differential equations. We study the emergence of synchronization, be it spontaneous or induced by a pinning control action, and provide sufficient conditions for local and global convergence. We enable the use of the Master Stability Function approach for studying coevolving networks, thereby obtaining conditions for almost sure local exponential convergence, whereas global conditions are derived using a Lyapunov-based approach. The theoretical results are then leveraged to design synchronization and pinning control protocols in two select applications. In the first one, the edge dynamics are tailored to induce spontaneous synchronization, whereas in the second the pinning edges are activated/deactivated and their weights modulated to drive the network towards the pinner’s trajectory in a distributed fashion.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"53 ","pages":"Pages 147-160"},"PeriodicalIF":7.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Synchronization and pinning control of stochastic coevolving networks\",\"authors\":\"Fabio Della Rossa , Pietro De Lellis\",\"doi\":\"10.1016/j.arcontrol.2022.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Network dynamical systems are often characterized by the interlaced evolution of the node and edge dynamics, which are driven by both deterministic and stochastic factors. This manuscript offers a general mathematical model of coevolving network, which associates a state variable to each node and edge in the network, and describes their evolution through coupled stochastic differential equations. We study the emergence of synchronization, be it spontaneous or induced by a pinning control action, and provide sufficient conditions for local and global convergence. We enable the use of the Master Stability Function approach for studying coevolving networks, thereby obtaining conditions for almost sure local exponential convergence, whereas global conditions are derived using a Lyapunov-based approach. The theoretical results are then leveraged to design synchronization and pinning control protocols in two select applications. In the first one, the edge dynamics are tailored to induce spontaneous synchronization, whereas in the second the pinning edges are activated/deactivated and their weights modulated to drive the network towards the pinner’s trajectory in a distributed fashion.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"53 \",\"pages\":\"Pages 147-160\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578822000207\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578822000207","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Synchronization and pinning control of stochastic coevolving networks
Network dynamical systems are often characterized by the interlaced evolution of the node and edge dynamics, which are driven by both deterministic and stochastic factors. This manuscript offers a general mathematical model of coevolving network, which associates a state variable to each node and edge in the network, and describes their evolution through coupled stochastic differential equations. We study the emergence of synchronization, be it spontaneous or induced by a pinning control action, and provide sufficient conditions for local and global convergence. We enable the use of the Master Stability Function approach for studying coevolving networks, thereby obtaining conditions for almost sure local exponential convergence, whereas global conditions are derived using a Lyapunov-based approach. The theoretical results are then leveraged to design synchronization and pinning control protocols in two select applications. In the first one, the edge dynamics are tailored to induce spontaneous synchronization, whereas in the second the pinning edges are activated/deactivated and their weights modulated to drive the network towards the pinner’s trajectory in a distributed fashion.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.