图类中有缺陷Ramsey数的精确值

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Yunus Emre Demirci , Tınaz Ekim , John Gimbel , Mehmet Akif Yıldız
{"title":"图类中有缺陷Ramsey数的精确值","authors":"Yunus Emre Demirci ,&nbsp;Tınaz Ekim ,&nbsp;John Gimbel ,&nbsp;Mehmet Akif Yıldız","doi":"10.1016/j.disopt.2021.100673","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <span><math><mi>G</mi></math></span>, a <span><math><mi>k</mi></math></span><em>-sparse</em> <span><math><mi>j</mi></math></span><em>-set</em> is a set of <span><math><mi>j</mi></math></span><span> vertices inducing a subgraph with maximum degree at most </span><span><math><mi>k</mi></math></span>. A <span><math><mi>k</mi></math></span><em>-dense</em> <span><math><mi>i</mi></math></span><em>-set</em> is a set of <span><math><mi>i</mi></math></span> vertices that is <span><math><mi>k</mi></math></span>-sparse in the complement of <span><math><mi>G</mi></math></span>. As a generalization of Ramsey numbers, the <span><math><mi>k</mi></math></span>-defective Ramsey number <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> for the graph class <span><math><mi>G</mi></math></span> is defined as the smallest natural number <span><math><mi>n</mi></math></span> such that all graphs on <span><math><mi>n</mi></math></span> vertices in the class <span><math><mi>G</mi></math></span> have either a <span><math><mi>k</mi></math></span>-dense <span><math><mi>i</mi></math></span>-set or a <span><math><mi>k</mi></math></span>-sparse <span><math><mi>j</mi></math></span>-set. In this paper, we examine <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>G</mi></math></span><span> represents various graph classes. For forests and cographs, we give exact formulas for all defective Ramsey numbers. For cacti, bipartite graphs and split graphs, we derive defective Ramsey numbers in most of the cases and point out open questions, formulated as conjectures if possible.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exact values of defective Ramsey numbers in graph classes\",\"authors\":\"Yunus Emre Demirci ,&nbsp;Tınaz Ekim ,&nbsp;John Gimbel ,&nbsp;Mehmet Akif Yıldız\",\"doi\":\"10.1016/j.disopt.2021.100673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <span><math><mi>G</mi></math></span>, a <span><math><mi>k</mi></math></span><em>-sparse</em> <span><math><mi>j</mi></math></span><em>-set</em> is a set of <span><math><mi>j</mi></math></span><span> vertices inducing a subgraph with maximum degree at most </span><span><math><mi>k</mi></math></span>. A <span><math><mi>k</mi></math></span><em>-dense</em> <span><math><mi>i</mi></math></span><em>-set</em> is a set of <span><math><mi>i</mi></math></span> vertices that is <span><math><mi>k</mi></math></span>-sparse in the complement of <span><math><mi>G</mi></math></span>. As a generalization of Ramsey numbers, the <span><math><mi>k</mi></math></span>-defective Ramsey number <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> for the graph class <span><math><mi>G</mi></math></span> is defined as the smallest natural number <span><math><mi>n</mi></math></span> such that all graphs on <span><math><mi>n</mi></math></span> vertices in the class <span><math><mi>G</mi></math></span> have either a <span><math><mi>k</mi></math></span>-dense <span><math><mi>i</mi></math></span>-set or a <span><math><mi>k</mi></math></span>-sparse <span><math><mi>j</mi></math></span>-set. In this paper, we examine <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>G</mi></math></span><span> represents various graph classes. For forests and cographs, we give exact formulas for all defective Ramsey numbers. For cacti, bipartite graphs and split graphs, we derive defective Ramsey numbers in most of the cases and point out open questions, formulated as conjectures if possible.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528621000529\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528621000529","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

给定一个图G, k-sparse j-set j是一组顶点诱导子图与最大程度最多k。k-dense我设置是一组我顶点k-sparse G·拉姆齐的泛化的补数,数量k-defective拉姆齐RkG (i, j)类图G是定义为最小的自然数n,这样所有图形顶点班上G要么k-dense我设置或k-sparse j-set。在本文中,我们研究RkG(i,j),其中G表示各种图类。对于森林和图形,我们给出了所有缺陷拉姆齐数的精确公式。对于仙人掌图、二部图和分裂图,我们在大多数情况下推导了有缺陷的Ramsey数,并指出了开放的问题,如果可能的话,将其表述为猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact values of defective Ramsey numbers in graph classes

Given a graph G, a k-sparse j-set is a set of j vertices inducing a subgraph with maximum degree at most k. A k-dense i-set is a set of i vertices that is k-sparse in the complement of G. As a generalization of Ramsey numbers, the k-defective Ramsey number RkG(i,j) for the graph class G is defined as the smallest natural number n such that all graphs on n vertices in the class G have either a k-dense i-set or a k-sparse j-set. In this paper, we examine RkG(i,j) where G represents various graph classes. For forests and cographs, we give exact formulas for all defective Ramsey numbers. For cacti, bipartite graphs and split graphs, we derive defective Ramsey numbers in most of the cases and point out open questions, formulated as conjectures if possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信