拉普拉斯变换的数值反演性能

Fausto Arinos De Almeida Barbuto
{"title":"拉普拉斯变换的数值反演性能","authors":"Fausto Arinos De Almeida Barbuto","doi":"10.1016/0961-3552(91)90006-P","DOIUrl":null,"url":null,"abstract":"<div><p>The Laplace transformation is one of the most powerful tools in mathematics. However, the analytical inversion of a function in the Laplace field to the real field may sometimes be very difficult, or impossible. In 1970, Stehfest presented an algorithm to invert numerically these Laplace-field functions. The purpose of this work is to discuss the performance of this algorithm, and present a Turbo Pascal 5.0 program to perform numerical inversions of Laplace-field functions.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 3","pages":"Pages 148-155"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90006-P","citationCount":"5","resultStr":"{\"title\":\"Performance of numerical inversion of Laplace transforms\",\"authors\":\"Fausto Arinos De Almeida Barbuto\",\"doi\":\"10.1016/0961-3552(91)90006-P\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Laplace transformation is one of the most powerful tools in mathematics. However, the analytical inversion of a function in the Laplace field to the real field may sometimes be very difficult, or impossible. In 1970, Stehfest presented an algorithm to invert numerically these Laplace-field functions. The purpose of this work is to discuss the performance of this algorithm, and present a Turbo Pascal 5.0 program to perform numerical inversions of Laplace-field functions.</p></div>\",\"PeriodicalId\":100044,\"journal\":{\"name\":\"Advances in Engineering Software and Workstations\",\"volume\":\"13 3\",\"pages\":\"Pages 148-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0961-3552(91)90006-P\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software and Workstations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/096135529190006P\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096135529190006P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

拉普拉斯变换是数学中最强大的工具之一。然而,函数在拉普拉斯域到实域的解析反演有时是非常困难的,或者是不可能的。1970年,Stehfest提出了一种对这些拉普拉斯场函数进行数值反演的算法。本文的目的是讨论该算法的性能,并提出一个Turbo Pascal 5.0程序来执行拉普拉斯场函数的数值反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of numerical inversion of Laplace transforms

The Laplace transformation is one of the most powerful tools in mathematics. However, the analytical inversion of a function in the Laplace field to the real field may sometimes be very difficult, or impossible. In 1970, Stehfest presented an algorithm to invert numerically these Laplace-field functions. The purpose of this work is to discuss the performance of this algorithm, and present a Turbo Pascal 5.0 program to perform numerical inversions of Laplace-field functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信