O. V. Bushkova, E. A. Sanginov, S. D. Chernyuk, R. R. Kayumov, L. V. Shmygleva, Yu. A. Dobrovolsky, A. B. Yaroslavtsev
{"title":"基于锂离子磺酸基阳离子交换膜的聚合物电解质:电化学电源的研究现状及前景","authors":"O. V. Bushkova, E. A. Sanginov, S. D. Chernyuk, R. R. Kayumov, L. V. Shmygleva, Yu. A. Dobrovolsky, A. B. Yaroslavtsev","doi":"10.1134/S2517751622070010","DOIUrl":null,"url":null,"abstract":"<p>The review analyzes and summarizes the results of investgations of lithium-conducting polymer electrolytes obtained via ion exchange from the initial H<sup>+</sup> form of perfluorinated sulfonic cation-exchange membranes of the Nafion family. Salt forms of membranes not only retain the high strength and chemical stability inherent in the parent materials, but also have increased thermal stability (compared to the protonated form). The introduction of plasticizers (dipolar aprotic solvents and their mixtures) and modifying additives makes it possible to achieve a conductivity of 10<sup>−5</sup>–10<sup>−3</sup> S/cm in the ambient temperature range. This makes polymer electrolytes based on lithiated Nafion membranes (Li-Nafion) very attractive for practical use instead of liquid nonaqueous electrolytes in electrochemical power sources. Such research is actively conducted in the field of lithium–oxygen, lithium−sulfur, and lithium-ion batteries, as well as batteries with a lithium metal negative electrode. It is proposed to use Li-Nafion not only as an electrolyte/separator, but also as a functional binder of electrode materials, as a thin barrier layer on a positive electrode or a microporous separator, as an artificial protective layer on the surface of a lithium metal electrode, etc. For all types of considered power sources, the results confirming the prospects for the development of electrochemical systems using Li-Nafion have been obtained.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 6","pages":"433 - 454"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources\",\"authors\":\"O. V. Bushkova, E. A. Sanginov, S. D. Chernyuk, R. R. Kayumov, L. V. Shmygleva, Yu. A. Dobrovolsky, A. B. Yaroslavtsev\",\"doi\":\"10.1134/S2517751622070010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The review analyzes and summarizes the results of investgations of lithium-conducting polymer electrolytes obtained via ion exchange from the initial H<sup>+</sup> form of perfluorinated sulfonic cation-exchange membranes of the Nafion family. Salt forms of membranes not only retain the high strength and chemical stability inherent in the parent materials, but also have increased thermal stability (compared to the protonated form). The introduction of plasticizers (dipolar aprotic solvents and their mixtures) and modifying additives makes it possible to achieve a conductivity of 10<sup>−5</sup>–10<sup>−3</sup> S/cm in the ambient temperature range. This makes polymer electrolytes based on lithiated Nafion membranes (Li-Nafion) very attractive for practical use instead of liquid nonaqueous electrolytes in electrochemical power sources. Such research is actively conducted in the field of lithium–oxygen, lithium−sulfur, and lithium-ion batteries, as well as batteries with a lithium metal negative electrode. It is proposed to use Li-Nafion not only as an electrolyte/separator, but also as a functional binder of electrode materials, as a thin barrier layer on a positive electrode or a microporous separator, as an artificial protective layer on the surface of a lithium metal electrode, etc. For all types of considered power sources, the results confirming the prospects for the development of electrochemical systems using Li-Nafion have been obtained.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 6\",\"pages\":\"433 - 454\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622070010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622070010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources
The review analyzes and summarizes the results of investgations of lithium-conducting polymer electrolytes obtained via ion exchange from the initial H+ form of perfluorinated sulfonic cation-exchange membranes of the Nafion family. Salt forms of membranes not only retain the high strength and chemical stability inherent in the parent materials, but also have increased thermal stability (compared to the protonated form). The introduction of plasticizers (dipolar aprotic solvents and their mixtures) and modifying additives makes it possible to achieve a conductivity of 10−5–10−3 S/cm in the ambient temperature range. This makes polymer electrolytes based on lithiated Nafion membranes (Li-Nafion) very attractive for practical use instead of liquid nonaqueous electrolytes in electrochemical power sources. Such research is actively conducted in the field of lithium–oxygen, lithium−sulfur, and lithium-ion batteries, as well as batteries with a lithium metal negative electrode. It is proposed to use Li-Nafion not only as an electrolyte/separator, but also as a functional binder of electrode materials, as a thin barrier layer on a positive electrode or a microporous separator, as an artificial protective layer on the surface of a lithium metal electrode, etc. For all types of considered power sources, the results confirming the prospects for the development of electrochemical systems using Li-Nafion have been obtained.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.