Tarcísio Déda, William R. Wolf, Scott T. M. Dawson
{"title":"神经网络动态模型的反向传播在流量控制中的应用","authors":"Tarcísio Déda, William R. Wolf, Scott T. M. Dawson","doi":"10.1007/s00162-023-00641-6","DOIUrl":null,"url":null,"abstract":"<p>Backpropagation of neural network models (NNMs) is applied to control nonlinear dynamical systems using several different approaches. By leveraging open-loop data, we show the feasibility of building surrogate models with control inputs that are able to learn important features such as types of equilibria, limit cycles and chaos. Two novel approaches are presented and compared to gradient-based model predictive control (MPC): the neural network control (NNC), where an additional neural network is trained as a control law in a recurrent fashion using the nonlinear NNMs, and linear control design, enabled through linearization of the obtained NNMs. The latter is compared with dynamic mode decomposition with control (DMDc), which also relies on a data-driven linearized model. It is shown that the linearized NNMs better approximate the systems’ behavior near an equilibrium point than DMDc, particularly in cases where the data display highly nonlinear characteristics. The proposed control approaches are first tested on low-dimensional nonlinear systems presenting dynamical features such as stable and unstable limit cycles, besides chaos. Then, the NNC is applied to the nonlinear Kuramoto–Sivashinsky equation, exemplifying the control of a chaotic system with higher dimensionality. Finally, the proposed methodologies are tested on the compressible Navier–Stokes equations. In this case, the stabilization of a cylinder vortex shedding is sought using different actuation setups by taking measurements of the lift force with delay coordinates.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 1","pages":"35 - 59"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-023-00641-6.pdf","citationCount":"2","resultStr":"{\"title\":\"Backpropagation of neural network dynamical models applied to flow control\",\"authors\":\"Tarcísio Déda, William R. Wolf, Scott T. M. Dawson\",\"doi\":\"10.1007/s00162-023-00641-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Backpropagation of neural network models (NNMs) is applied to control nonlinear dynamical systems using several different approaches. By leveraging open-loop data, we show the feasibility of building surrogate models with control inputs that are able to learn important features such as types of equilibria, limit cycles and chaos. Two novel approaches are presented and compared to gradient-based model predictive control (MPC): the neural network control (NNC), where an additional neural network is trained as a control law in a recurrent fashion using the nonlinear NNMs, and linear control design, enabled through linearization of the obtained NNMs. The latter is compared with dynamic mode decomposition with control (DMDc), which also relies on a data-driven linearized model. It is shown that the linearized NNMs better approximate the systems’ behavior near an equilibrium point than DMDc, particularly in cases where the data display highly nonlinear characteristics. The proposed control approaches are first tested on low-dimensional nonlinear systems presenting dynamical features such as stable and unstable limit cycles, besides chaos. Then, the NNC is applied to the nonlinear Kuramoto–Sivashinsky equation, exemplifying the control of a chaotic system with higher dimensionality. Finally, the proposed methodologies are tested on the compressible Navier–Stokes equations. In this case, the stabilization of a cylinder vortex shedding is sought using different actuation setups by taking measurements of the lift force with delay coordinates.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"37 1\",\"pages\":\"35 - 59\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00162-023-00641-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00641-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00641-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Backpropagation of neural network dynamical models applied to flow control
Backpropagation of neural network models (NNMs) is applied to control nonlinear dynamical systems using several different approaches. By leveraging open-loop data, we show the feasibility of building surrogate models with control inputs that are able to learn important features such as types of equilibria, limit cycles and chaos. Two novel approaches are presented and compared to gradient-based model predictive control (MPC): the neural network control (NNC), where an additional neural network is trained as a control law in a recurrent fashion using the nonlinear NNMs, and linear control design, enabled through linearization of the obtained NNMs. The latter is compared with dynamic mode decomposition with control (DMDc), which also relies on a data-driven linearized model. It is shown that the linearized NNMs better approximate the systems’ behavior near an equilibrium point than DMDc, particularly in cases where the data display highly nonlinear characteristics. The proposed control approaches are first tested on low-dimensional nonlinear systems presenting dynamical features such as stable and unstable limit cycles, besides chaos. Then, the NNC is applied to the nonlinear Kuramoto–Sivashinsky equation, exemplifying the control of a chaotic system with higher dimensionality. Finally, the proposed methodologies are tested on the compressible Navier–Stokes equations. In this case, the stabilization of a cylinder vortex shedding is sought using different actuation setups by taking measurements of the lift force with delay coordinates.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.