M. Ayukawa , K. Makita , H. Yamagishi , M. Ejiri , T. Sakanoi
{"title":"极冠极光的特征","authors":"M. Ayukawa , K. Makita , H. Yamagishi , M. Ejiri , T. Sakanoi","doi":"10.1016/0021-9169(95)00180-8","DOIUrl":null,"url":null,"abstract":"<div><p>The characteristics of extremely high-latitude dayside auroras are examined by using auroral TV data obtained at Godhavn, Greenland, and simultaneous DMSP particle data. Two different kinds of aurora are found near the pre-noon sector, namely (1) the polar arc: this aurora is observed during quiet periods and originates from the dayside region. It is related to about 100 eV electron precipitation or less, and (2) the polar corona: this aurora is observed during disturbed periods and the appearence latitute of this aurora is confined within a certain region about 70–80° MLAT. It is related to a few hundred eV electrons. These results suggest that the origin of the polar arc seems to be the plasma mantle or low-latitude boundary layer, and the origin of the polar corona seems to be the low-latitude boundary layer or Boundary Plasma Sheet.</p></div>","PeriodicalId":100754,"journal":{"name":"Journal of Atmospheric and Terrestrial Physics","volume":"58 16","pages":"Pages 1885-1894"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0021-9169(95)00180-8","citationCount":"4","resultStr":"{\"title\":\"Characteristics of polar cap aurora\",\"authors\":\"M. Ayukawa , K. Makita , H. Yamagishi , M. Ejiri , T. Sakanoi\",\"doi\":\"10.1016/0021-9169(95)00180-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The characteristics of extremely high-latitude dayside auroras are examined by using auroral TV data obtained at Godhavn, Greenland, and simultaneous DMSP particle data. Two different kinds of aurora are found near the pre-noon sector, namely (1) the polar arc: this aurora is observed during quiet periods and originates from the dayside region. It is related to about 100 eV electron precipitation or less, and (2) the polar corona: this aurora is observed during disturbed periods and the appearence latitute of this aurora is confined within a certain region about 70–80° MLAT. It is related to a few hundred eV electrons. These results suggest that the origin of the polar arc seems to be the plasma mantle or low-latitude boundary layer, and the origin of the polar corona seems to be the low-latitude boundary layer or Boundary Plasma Sheet.</p></div>\",\"PeriodicalId\":100754,\"journal\":{\"name\":\"Journal of Atmospheric and Terrestrial Physics\",\"volume\":\"58 16\",\"pages\":\"Pages 1885-1894\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0021-9169(95)00180-8\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Terrestrial Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0021916995001808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Terrestrial Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0021916995001808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The characteristics of extremely high-latitude dayside auroras are examined by using auroral TV data obtained at Godhavn, Greenland, and simultaneous DMSP particle data. Two different kinds of aurora are found near the pre-noon sector, namely (1) the polar arc: this aurora is observed during quiet periods and originates from the dayside region. It is related to about 100 eV electron precipitation or less, and (2) the polar corona: this aurora is observed during disturbed periods and the appearence latitute of this aurora is confined within a certain region about 70–80° MLAT. It is related to a few hundred eV electrons. These results suggest that the origin of the polar arc seems to be the plasma mantle or low-latitude boundary layer, and the origin of the polar corona seems to be the low-latitude boundary layer or Boundary Plasma Sheet.