{"title":"用多层大气模式估计风和温度对f区中尺度重力波的影响","authors":"J.A Waldock","doi":"10.1016/0021-9169(95)00144-1","DOIUrl":null,"url":null,"abstract":"<div><p>Diurnal variations in the propagation direction of atmospheric gravity waves, and the travelling ionospheric disturbances to which they give rise, have been observed in many experimental observations and several modelling studies have demonstrated that this is primarily due to the corresponding diurnal rotation in the direction of the thermospheric wind. Other variations have been attributed to seasonal or other effects, but the effects of variations in the thermospheric temperature have not previously been analysed in detail. We present results from a study of the propagation of gravity waves through a layered atmosphere in which the thermospheric wind and temperature are derived from a three-dimensional time-dependent model. The analysis has been carried out for a range of wave speeds and periods, and for a range of times, seasons and propagation azimuths. Results suggest that a significant diurnal variation in the transmission coefficient for waves propagating through the thermosphere exists with seasonally dependent maxima. Transmission increases for increasing wave period up to about 50 min, after which it remains approximately constant. Maximum transmission occurs for wave phase speeds around 200–250 m/s and falls to zero for speeds less than about 100 m/s. An exception to this rule occurs for waves with periods less than 40 min and speeds less than 50 m/s for which significant transmission appears to be theoretically possible.</p></div>","PeriodicalId":100754,"journal":{"name":"Journal of Atmospheric and Terrestrial Physics","volume":"58 11","pages":"Pages 1259-1273"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0021-9169(95)00144-1","citationCount":"3","resultStr":"{\"title\":\"Wind and temperature effects on F-region medium-scale gravity waves estimated using a multi-layer atmospheric model\",\"authors\":\"J.A Waldock\",\"doi\":\"10.1016/0021-9169(95)00144-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diurnal variations in the propagation direction of atmospheric gravity waves, and the travelling ionospheric disturbances to which they give rise, have been observed in many experimental observations and several modelling studies have demonstrated that this is primarily due to the corresponding diurnal rotation in the direction of the thermospheric wind. Other variations have been attributed to seasonal or other effects, but the effects of variations in the thermospheric temperature have not previously been analysed in detail. We present results from a study of the propagation of gravity waves through a layered atmosphere in which the thermospheric wind and temperature are derived from a three-dimensional time-dependent model. The analysis has been carried out for a range of wave speeds and periods, and for a range of times, seasons and propagation azimuths. Results suggest that a significant diurnal variation in the transmission coefficient for waves propagating through the thermosphere exists with seasonally dependent maxima. Transmission increases for increasing wave period up to about 50 min, after which it remains approximately constant. Maximum transmission occurs for wave phase speeds around 200–250 m/s and falls to zero for speeds less than about 100 m/s. An exception to this rule occurs for waves with periods less than 40 min and speeds less than 50 m/s for which significant transmission appears to be theoretically possible.</p></div>\",\"PeriodicalId\":100754,\"journal\":{\"name\":\"Journal of Atmospheric and Terrestrial Physics\",\"volume\":\"58 11\",\"pages\":\"Pages 1259-1273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0021-9169(95)00144-1\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Terrestrial Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0021916995001441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Terrestrial Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0021916995001441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wind and temperature effects on F-region medium-scale gravity waves estimated using a multi-layer atmospheric model
Diurnal variations in the propagation direction of atmospheric gravity waves, and the travelling ionospheric disturbances to which they give rise, have been observed in many experimental observations and several modelling studies have demonstrated that this is primarily due to the corresponding diurnal rotation in the direction of the thermospheric wind. Other variations have been attributed to seasonal or other effects, but the effects of variations in the thermospheric temperature have not previously been analysed in detail. We present results from a study of the propagation of gravity waves through a layered atmosphere in which the thermospheric wind and temperature are derived from a three-dimensional time-dependent model. The analysis has been carried out for a range of wave speeds and periods, and for a range of times, seasons and propagation azimuths. Results suggest that a significant diurnal variation in the transmission coefficient for waves propagating through the thermosphere exists with seasonally dependent maxima. Transmission increases for increasing wave period up to about 50 min, after which it remains approximately constant. Maximum transmission occurs for wave phase speeds around 200–250 m/s and falls to zero for speeds less than about 100 m/s. An exception to this rule occurs for waves with periods less than 40 min and speeds less than 50 m/s for which significant transmission appears to be theoretically possible.