HIV-1 gp120Bal 通过激活谷氨酸和趋化因子受体下调皮质神经元中磷酸化的 NMDA 受体亚基 1

IF 5.2 3区 医学 Q1 NEUROSCIENCES
Journal of Neuroimmune Pharmacology Pub Date : 2016-03-01 Epub Date: 2015-11-18 DOI:10.1007/s11481-015-9644-7
Wenjuan Ru, Shao-Jun Tang
{"title":"HIV-1 gp120Bal 通过激活谷氨酸和趋化因子受体下调皮质神经元中磷酸化的 NMDA 受体亚基 1","authors":"Wenjuan Ru, Shao-Jun Tang","doi":"10.1007/s11481-015-9644-7","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection. </p>","PeriodicalId":16500,"journal":{"name":"Journal of Neuroimmune Pharmacology","volume":"11 1","pages":"182-91"},"PeriodicalIF":5.2000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746099/pdf/","citationCount":"0","resultStr":"{\"title\":\"HIV-1 gp120Bal down-Regulates Phosphorylated NMDA Receptor Subunit 1 in Cortical Neurons via Activation of Glutamate and Chemokine Receptors.\",\"authors\":\"Wenjuan Ru, Shao-Jun Tang\",\"doi\":\"10.1007/s11481-015-9644-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection. </p>\",\"PeriodicalId\":16500,\"journal\":{\"name\":\"Journal of Neuroimmune Pharmacology\",\"volume\":\"11 1\",\"pages\":\"182-91\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimmune Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-015-9644-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimmune Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11481-015-9644-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

HIV-1包膜糖蛋白gp120(gp120)是一种主要毒力蛋白,与HIV相关神经认知障碍(HAND)的发病机制有关。尽管有人认为 gp120 通过破坏 NMDA 受体(NMDAR)的功能导致突触和神经元损伤,但其潜在机制尚不清楚。在这里,我们发现 gp120Bal 会下调 NMDAR 亚基 1 NR1(在 Ser896 和 Ser897 处)的磷酸化,而磷酸化对 NMDAR 功能至关重要。gp120Bal 的这种作用被 NMDA 和 AMPA 受体的特异性拮抗剂所阻断,这表明突触激活起着关键作用。此外,CCR5 和 CXCR4 趋化因子受体的拮抗剂 AMD3100 和马拉维若分别抑制了 gp120Bal 对 NR1 的作用,表明 CXCR4 和 CCR5 的活化参与其中。这些发现可能为了解 HIV-1 感染引起的突触发病机制提供了机理上的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIV-1 gp120Bal down-Regulates Phosphorylated NMDA Receptor Subunit 1 in Cortical Neurons via Activation of Glutamate and Chemokine Receptors.

HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.60
自引率
0.00%
发文量
18
审稿时长
6-12 weeks
期刊介绍: The aims of the Journal of Neuroimmune Pharmacology are to promote the dissemination, interest, and exchange of new and important discoveries for the pharmacology and immunology of the nervous system. The aims parallel that of the Society on NeuroImmune Pharmacology by increasing the fundamental understanding of neurologic and neuropsychiatric disorders affected by the immune system or vice versa and towards pharmacologic measures that lead, either to a better understanding of disease mechanisms, or by improving disease outcomes. The scope of JNIP includes all primary works and reviews into the etiology, prevention, and treatment of neuroimmune and nervous system diseases affected by disordered immunity. Original studies serving to define neuroimmune modulation of environmental or endogenous cues such as toxins and drugs of abuse, hormones, and cytokines are welcome. JNIP will serve as a reliable source of interdisciplinary information bridging the fields of pharmacology, immunology, and neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信