扩散方程的随机方法

Raul Mihail , Liviu Ionită, Sorin Straja
{"title":"扩散方程的随机方法","authors":"Raul Mihail ,&nbsp;Liviu Ionită,&nbsp;Sorin Straja","doi":"10.1016/0004-6981(89)90104-2","DOIUrl":null,"url":null,"abstract":"<div><p>Taking into account the wind speed perturbations from the deterministic equation of conservation of the molecular species of the pollutant we obtained the corresponding stochastic differential equation. Because there is no mathematical reason to discriminate between its Ito and Stratonovich interpretations, we retained, on physical grounds, the Stratonovich interpretation and we derived the equation of the expected value of the pollutant concentration.</p></div>","PeriodicalId":100138,"journal":{"name":"Atmospheric Environment (1967)","volume":"23 1","pages":"Pages 123-125"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0004-6981(89)90104-2","citationCount":"3","resultStr":"{\"title\":\"A stochastic approach to the diffusion equation\",\"authors\":\"Raul Mihail ,&nbsp;Liviu Ionită,&nbsp;Sorin Straja\",\"doi\":\"10.1016/0004-6981(89)90104-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Taking into account the wind speed perturbations from the deterministic equation of conservation of the molecular species of the pollutant we obtained the corresponding stochastic differential equation. Because there is no mathematical reason to discriminate between its Ito and Stratonovich interpretations, we retained, on physical grounds, the Stratonovich interpretation and we derived the equation of the expected value of the pollutant concentration.</p></div>\",\"PeriodicalId\":100138,\"journal\":{\"name\":\"Atmospheric Environment (1967)\",\"volume\":\"23 1\",\"pages\":\"Pages 123-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0004-6981(89)90104-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment (1967)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0004698189901042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment (1967)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0004698189901042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从污染物分子种类守恒的确定性方程中考虑风速扰动,得到了相应的随机微分方程。因为没有数学上的理由来区分伊藤和斯特拉诺维奇的解释,我们保留了斯特拉诺维奇的解释,基于物理上的理由,我们推导出了污染物浓度期望值的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic approach to the diffusion equation

Taking into account the wind speed perturbations from the deterministic equation of conservation of the molecular species of the pollutant we obtained the corresponding stochastic differential equation. Because there is no mathematical reason to discriminate between its Ito and Stratonovich interpretations, we retained, on physical grounds, the Stratonovich interpretation and we derived the equation of the expected value of the pollutant concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信