{"title":"用角变量化简的方法构造可数线性微分-差分方程组的无限维不变环面","authors":"A. Samoilenko, Yu. V. Teplins’kyi, K. V. Pasyuk","doi":"10.1007/S11072-011-0157-X","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54718,"journal":{"name":"Nonlinear Oscillations","volume":"14 1","pages":"280-294"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S11072-011-0157-X","citationCount":"0","resultStr":"{\"title\":\"Construction of an infinite-dimensional invariant torus of a countable system of linear differential-difference equations by the method of its reduction in the angular variable\",\"authors\":\"A. Samoilenko, Yu. V. Teplins’kyi, K. V. Pasyuk\",\"doi\":\"10.1007/S11072-011-0157-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54718,\"journal\":{\"name\":\"Nonlinear Oscillations\",\"volume\":\"14 1\",\"pages\":\"280-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/S11072-011-0157-X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Oscillations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/S11072-011-0157-X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Oscillations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/S11072-011-0157-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of an infinite-dimensional invariant torus of a countable system of linear differential-difference equations by the method of its reduction in the angular variable