Patrick Bastian, Holger Dette, Lukas Koletzko, Kathrin Möllenhoff
{"title":"比较回归曲线:从 L1 角度看问题","authors":"Patrick Bastian, Holger Dette, Lukas Koletzko, Kathrin Möllenhoff","doi":"10.1007/s10463-023-00880-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their <span>\\(L^1\\)</span>-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing regression curves: an L1-point of view\",\"authors\":\"Patrick Bastian, Holger Dette, Lukas Koletzko, Kathrin Möllenhoff\",\"doi\":\"10.1007/s10463-023-00880-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their <span>\\\\(L^1\\\\)</span>-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-023-00880-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00880-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their \(L^1\)-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.