含弹粘塑性响应的广义ogden型弹性各向同性超弹性模型

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
M. B. Rubin, K. Heiduschke
{"title":"含弹粘塑性响应的广义ogden型弹性各向同性超弹性模型","authors":"M. B. Rubin,&nbsp;K. Heiduschke","doi":"10.1007/s10659-023-09995-8","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this paper is to generalize an Ogden-type model for elastically isotropic response to include elastic-viscoplastic response. The proposed model uses a strain energy function that depends on the total dilatation and the maximum and minimum elastic distortional stretches. A novel feature of the model is that these elastic distortional stretches are expressed in terms of two independent invariants of an elastic distortional deformation tensor that is determined by an evolution equation. The Cauchy stress is determined by derivatives of the strain energy function, the dilatation and the elastic distortional deformation tensor without the need for determining its principal directions. Examples demonstrate the response of the model for hyperelastic response but the proposed formulation can also model a smooth elastic-plastic transition with rate-independent or rate-dependent response with hardening.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-023-09995-8.pdf","citationCount":"2","resultStr":"{\"title\":\"A Generalized Ogden-Type Elastically Isotropic Hyperelastic Model Including Elastic-Viscoplastic Response\",\"authors\":\"M. B. Rubin,&nbsp;K. Heiduschke\",\"doi\":\"10.1007/s10659-023-09995-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this paper is to generalize an Ogden-type model for elastically isotropic response to include elastic-viscoplastic response. The proposed model uses a strain energy function that depends on the total dilatation and the maximum and minimum elastic distortional stretches. A novel feature of the model is that these elastic distortional stretches are expressed in terms of two independent invariants of an elastic distortional deformation tensor that is determined by an evolution equation. The Cauchy stress is determined by derivatives of the strain energy function, the dilatation and the elastic distortional deformation tensor without the need for determining its principal directions. Examples demonstrate the response of the model for hyperelastic response but the proposed formulation can also model a smooth elastic-plastic transition with rate-independent or rate-dependent response with hardening.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10659-023-09995-8.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-023-09995-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-09995-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是推广奥格登型弹性各向同性响应模型,使其包括弹粘塑性响应。所提出的模型使用了一个应变能函数,该函数依赖于总膨胀和最大和最小弹性扭曲拉伸。该模型的一个新特点是,这些弹性扭曲拉伸是由一个演化方程决定的弹性扭曲变形张量的两个独立不变量表示的。柯西应力由应变能函数、膨胀张量和弹性变形张量的导数确定,而不需要确定其主方向。实例证明了超弹性响应模型的响应,但所提出的公式也可以模拟具有速率无关或速率相关的硬化响应的光滑弹塑性过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Generalized Ogden-Type Elastically Isotropic Hyperelastic Model Including Elastic-Viscoplastic Response

A Generalized Ogden-Type Elastically Isotropic Hyperelastic Model Including Elastic-Viscoplastic Response

The objective of this paper is to generalize an Ogden-type model for elastically isotropic response to include elastic-viscoplastic response. The proposed model uses a strain energy function that depends on the total dilatation and the maximum and minimum elastic distortional stretches. A novel feature of the model is that these elastic distortional stretches are expressed in terms of two independent invariants of an elastic distortional deformation tensor that is determined by an evolution equation. The Cauchy stress is determined by derivatives of the strain energy function, the dilatation and the elastic distortional deformation tensor without the need for determining its principal directions. Examples demonstrate the response of the model for hyperelastic response but the proposed formulation can also model a smooth elastic-plastic transition with rate-independent or rate-dependent response with hardening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信