在接触电极上使用聚合物表面改性剂对二硫化钼场效应晶体管进行肖特基势垒高度工程

IF 4.703 3区 材料科学
Dongwon Choi, Jeehoon Jeon, Tae-Eon Park, Byeong-Kwon Ju, Ki-Young Lee
{"title":"在接触电极上使用聚合物表面改性剂对二硫化钼场效应晶体管进行肖特基势垒高度工程","authors":"Dongwon Choi,&nbsp;Jeehoon Jeon,&nbsp;Tae-Eon Park,&nbsp;Byeong-Kwon Ju,&nbsp;Ki-Young Lee","doi":"10.1186/s11671-023-03855-z","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS<sub>2</sub>) and tungsten diselenide (WSe<sub>2</sub>), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS<sub>2</sub> field-effect transistors (FETs) by lowering the work function (<i>Ф</i><sub>m</sub> = <i>E</i><sub>vacuum</sub> − <i>E</i><sub>F,metal</sub>) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (–NH<sub>2</sub>), as a surface modifier of the Au (<i>Ф</i><sub>Au</sub> = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS<sub>2</sub> FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03855-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Schottky barrier height engineering on MoS2 field-effect transistors using a polymer surface modifier on a contact electrode\",\"authors\":\"Dongwon Choi,&nbsp;Jeehoon Jeon,&nbsp;Tae-Eon Park,&nbsp;Byeong-Kwon Ju,&nbsp;Ki-Young Lee\",\"doi\":\"10.1186/s11671-023-03855-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS<sub>2</sub>) and tungsten diselenide (WSe<sub>2</sub>), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS<sub>2</sub> field-effect transistors (FETs) by lowering the work function (<i>Ф</i><sub>m</sub> = <i>E</i><sub>vacuum</sub> − <i>E</i><sub>F,metal</sub>) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (–NH<sub>2</sub>), as a surface modifier of the Au (<i>Ф</i><sub>Au</sub> = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS<sub>2</sub> FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.</p></div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-023-03855-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-023-03855-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03855-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料因其优越的半导体特性而备受追捧,使其成为下一代电子和光电子器件的有希望的候选者。过渡金属二硫化物(TMDCs),如二硫化钼(MoS2)和二硒化钨(WSe2),是有前途的替代二维材料。然而,由于在金属触点和半导体TMDCs之间形成肖特基屏障,基于这些材料的器件的性能会下降。在这里,我们通过降低接触金属的功函数(Фm = evacum−EF,metal)来降低MoS2场效应晶体管(fet)的肖特基势垒高度。我们选择聚乙烯亚胺(PEI),一种含有简单脂肪族胺(-NH2)的聚合物,作为Au (ФAu = 5.10 eV)接触金属的表面改性剂。PEI是一种众所周知的表面改性剂,可以降低各种导体(如金属和导电聚合物)的功函数。迄今为止,这种表面改性剂已用于有机基器件,包括有机发光二极管、有机太阳能电池和有机薄膜晶体管。在本研究中,我们使用简单的PEI涂层来调整MoS2 fet的接触电极的功函数。该方法快速,易于在环境条件下实现,并且有效地降低了肖特基势垒高度。这种简单有效的方法具有诸多优点,可望在大面积电子学和光电子学领域得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schottky barrier height engineering on MoS2 field-effect transistors using a polymer surface modifier on a contact electrode

Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS2 field-effect transistors (FETs) by lowering the work function (Фm = Evacuum − EF,metal) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (–NH2), as a surface modifier of the Au (ФAu = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS2 FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信