GD3:广义离散缺陷动力学

Laurent Capolungo, Vincent Taupin
{"title":"GD3:广义离散缺陷动力学","authors":"Laurent Capolungo,&nbsp;Vincent Taupin","doi":"10.1186/s41313-018-0013-9","DOIUrl":null,"url":null,"abstract":"<p>A mesoscale model is introduced to study the dynamics of material defects lying at interface junctions. The proposed framework couples the dynamics of discrete dislocation and disclination lines. Disclinations are expected to be natural defects at interface junctions; their presence serving the purpose of accommodating discontinuities in rotation fields at material interface junctions. Crystallography-based rules are proposed to describe the kinematics of disclination motion. A discrete-continuous couple-stress framework, in which discrete defect lines are introduced as plastic eigenstrains and eigencurvatures, is proposed to explicitly follow the dynamics of interfacial defects. The framework is then applied to study <span>\\(\\left (10\\bar {1}2\\right)\\)</span> twin transverse propagation and thickening in magnesium. Focusing first on the case of a twin domain, It is shown that a disclination based representation of twin domains allows for an appropriate mechanistic description of the kinematics of shear transformations. In what concerns twin thickening, the stability of defects at twin interfaces is further studied. To this end, a 3D crater lying on a twin interface is described as a dipole of disclination loops. Upon self-relaxation, it is found that out of plane motion of disclinations followed by the nucleation of twinning dislocations can be activated; thereby showing that conservative non-planar motion of disclinations can be thermodynamically favorable; mechanism that had been postulated some 50 years ago.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-018-0013-9","citationCount":"14","resultStr":"{\"title\":\"GD3: generalized discrete defect dynamics\",\"authors\":\"Laurent Capolungo,&nbsp;Vincent Taupin\",\"doi\":\"10.1186/s41313-018-0013-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A mesoscale model is introduced to study the dynamics of material defects lying at interface junctions. The proposed framework couples the dynamics of discrete dislocation and disclination lines. Disclinations are expected to be natural defects at interface junctions; their presence serving the purpose of accommodating discontinuities in rotation fields at material interface junctions. Crystallography-based rules are proposed to describe the kinematics of disclination motion. A discrete-continuous couple-stress framework, in which discrete defect lines are introduced as plastic eigenstrains and eigencurvatures, is proposed to explicitly follow the dynamics of interfacial defects. The framework is then applied to study <span>\\\\(\\\\left (10\\\\bar {1}2\\\\right)\\\\)</span> twin transverse propagation and thickening in magnesium. Focusing first on the case of a twin domain, It is shown that a disclination based representation of twin domains allows for an appropriate mechanistic description of the kinematics of shear transformations. In what concerns twin thickening, the stability of defects at twin interfaces is further studied. To this end, a 3D crater lying on a twin interface is described as a dipole of disclination loops. Upon self-relaxation, it is found that out of plane motion of disclinations followed by the nucleation of twinning dislocations can be activated; thereby showing that conservative non-planar motion of disclinations can be thermodynamically favorable; mechanism that had been postulated some 50 years ago.</p>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41313-018-0013-9\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-018-0013-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-018-0013-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

引入了一种中尺度模型来研究界面结合处材料缺陷的动力学。所提出的框架耦合了离散位错和偏斜线的动力学。折弯是界面连接处的自然缺陷;它们的存在是为了适应材料界面结处旋转场的不连续。提出了基于晶体学的规则来描述偏斜运动的运动学。提出了一种离散-连续耦合应力框架,其中离散缺陷线作为塑性特征应变和本征曲率被引入,以明确地跟踪界面缺陷的动力学。然后将该框架应用于研究\(\left (10\bar {1}2\right)\)孪晶在镁中的横向扩展和增厚。首先关注孪域的情况,表明基于孪域的偏差表示允许对剪切变换的运动学进行适当的机械描述。在孪晶增厚方面,进一步研究了孪晶界面缺陷的稳定性。为此,位于双界面上的三维陨石坑被描述为偏斜环的偶极子。自松弛后,发现可以激活位错的平面外运动,然后是孪生位错的成核;从而表明保守的非平面位错运动在热力学上是有利的;这种机制在大约50年前就被假设出来了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GD3: generalized discrete defect dynamics

GD3: generalized discrete defect dynamics

A mesoscale model is introduced to study the dynamics of material defects lying at interface junctions. The proposed framework couples the dynamics of discrete dislocation and disclination lines. Disclinations are expected to be natural defects at interface junctions; their presence serving the purpose of accommodating discontinuities in rotation fields at material interface junctions. Crystallography-based rules are proposed to describe the kinematics of disclination motion. A discrete-continuous couple-stress framework, in which discrete defect lines are introduced as plastic eigenstrains and eigencurvatures, is proposed to explicitly follow the dynamics of interfacial defects. The framework is then applied to study \(\left (10\bar {1}2\right)\) twin transverse propagation and thickening in magnesium. Focusing first on the case of a twin domain, It is shown that a disclination based representation of twin domains allows for an appropriate mechanistic description of the kinematics of shear transformations. In what concerns twin thickening, the stability of defects at twin interfaces is further studied. To this end, a 3D crater lying on a twin interface is described as a dipole of disclination loops. Upon self-relaxation, it is found that out of plane motion of disclinations followed by the nucleation of twinning dislocations can be activated; thereby showing that conservative non-planar motion of disclinations can be thermodynamically favorable; mechanism that had been postulated some 50 years ago.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信