{"title":"固有作用的扭曲等变k理论中的补全定理","authors":"Noé Bárcenas, Mario Velásquez","doi":"10.1007/s40062-021-00299-z","DOIUrl":null,"url":null,"abstract":"<div><p>We compare different algebraic structures in twisted equivariant <i>K</i>-theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-theory, we prove a completion Theorem of Atiyah–Segal type for twisted equivariant K-theory. Using a universal coefficient theorem, we prove a cocompletion Theorem for twisted Borel K-homology for discrete groups.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"17 1","pages":"77 - 104"},"PeriodicalIF":0.7000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The completion theorem in twisted equivariant K-theory for proper actions\",\"authors\":\"Noé Bárcenas, Mario Velásquez\",\"doi\":\"10.1007/s40062-021-00299-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We compare different algebraic structures in twisted equivariant <i>K</i>-theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-theory, we prove a completion Theorem of Atiyah–Segal type for twisted equivariant K-theory. Using a universal coefficient theorem, we prove a cocompletion Theorem for twisted Borel K-homology for discrete groups.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"17 1\",\"pages\":\"77 - 104\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-021-00299-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00299-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
比较了离散群固有作用的扭曲等变k理论中不同的代数结构。在构造了非扭等变k理论的一个模结构后,证明了扭等变k理论的一个Atiyah-Segal型补全定理。利用一个普适系数定理,证明了离散群上扭曲Borel k -同调的一个协补定理。
The completion theorem in twisted equivariant K-theory for proper actions
We compare different algebraic structures in twisted equivariant K-theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-theory, we prove a completion Theorem of Atiyah–Segal type for twisted equivariant K-theory. Using a universal coefficient theorem, we prove a cocompletion Theorem for twisted Borel K-homology for discrete groups.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.