\(^{1}\Sigma\)态的解析双中心单电子重叠和交换积分:类h轨道的Lah数引导库仑格林函数

IF 1.7 4区 化学 Q3 Chemistry
Bharti Kapil, Ram Kuntal Hazra
{"title":"\\(^{1}\\Sigma\\)态的解析双中心单电子重叠和交换积分:类h轨道的Lah数引导库仑格林函数","authors":"Bharti Kapil,&nbsp;Ram Kuntal Hazra","doi":"10.1007/s12039-023-02153-6","DOIUrl":null,"url":null,"abstract":"<p>Theoretical studies of two-center one-electron (2<i>c</i>-1<i>e</i>) small microcluster are associated with hurdles in Schr<span>\\(\\ddot{o}\\)</span>dinger equation (SE) born out of divergence of Coulomb interactions and nuclear separation (<i>R</i>). The SE deals with morphologically altered <i>H</i>-like AOs, Slater type orbitals (STO), Gaussian type orbitals (GTO), B-spline, Sturmian function and <i>etc</i> in both VBT and MOT calculations. Few elegant computational and analytical methods are available for STO, GTO and other square integrable trial wavefunction under Born-Oppenheimer approximation. Even so, analytical treatment for <i>H</i>-like AOs has become very necessary. Utilizing Sheffer identity in associated Laguerre polynomial/Whittaker-<i>M</i> <i>H</i>-like AOs and adopting elliptic coordinates provide exact, analytical and simple 2c-1<i>e</i> Coulomb exchange interactions (<i>K</i>s) and overlap integrals as functions of <i>R</i> with different scaling factors associated with electrons. The energetics of diatomic molecule is evident to be the function of <i>R</i> with extrema as Lah number moderated <span>\\(L_n^{-1}\\)</span> for nuclear coordinates.</p>","PeriodicalId":50242,"journal":{"name":"Journal of Chemical Sciences","volume":"135 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical two-center one-electron overlap and exchange integrals for \\\\(^{1}\\\\Sigma\\\\) states: Lah number guided Coulomb Green function of H-like s-orbitals\",\"authors\":\"Bharti Kapil,&nbsp;Ram Kuntal Hazra\",\"doi\":\"10.1007/s12039-023-02153-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Theoretical studies of two-center one-electron (2<i>c</i>-1<i>e</i>) small microcluster are associated with hurdles in Schr<span>\\\\(\\\\ddot{o}\\\\)</span>dinger equation (SE) born out of divergence of Coulomb interactions and nuclear separation (<i>R</i>). The SE deals with morphologically altered <i>H</i>-like AOs, Slater type orbitals (STO), Gaussian type orbitals (GTO), B-spline, Sturmian function and <i>etc</i> in both VBT and MOT calculations. Few elegant computational and analytical methods are available for STO, GTO and other square integrable trial wavefunction under Born-Oppenheimer approximation. Even so, analytical treatment for <i>H</i>-like AOs has become very necessary. Utilizing Sheffer identity in associated Laguerre polynomial/Whittaker-<i>M</i> <i>H</i>-like AOs and adopting elliptic coordinates provide exact, analytical and simple 2c-1<i>e</i> Coulomb exchange interactions (<i>K</i>s) and overlap integrals as functions of <i>R</i> with different scaling factors associated with electrons. The energetics of diatomic molecule is evident to be the function of <i>R</i> with extrema as Lah number moderated <span>\\\\(L_n^{-1}\\\\)</span> for nuclear coordinates.</p>\",\"PeriodicalId\":50242,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":\"135 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-023-02153-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-023-02153-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

双中心单电子(2c-1e)小微团簇的理论研究与Schr \(\ddot{o}\)丁格方程(SE)中由于库仑相互作用发散和核分离(R)而产生的障碍有关。SE在VBT和MOT计算中涉及形态改变的类h原子、Slater型轨道(STO)、高斯型轨道(GTO)、b样条、Sturmian函数等。在Born-Oppenheimer近似下,STO、GTO和其他可积平方试波函数的计算和分析方法很少。即便如此,对类氢原子的分析处理也变得非常必要。利用相关Laguerre多项式/Whittaker-M类h - os中的Sheffer恒等式,采用椭圆坐标,提供了精确、解析和简单的2c-1e库仑交换相互作用(Ks)和重叠积分作为R的函数,具有不同的与电子相关的标度因子。双原子分子的能量学明显是R的函数,其极值为核坐标的Lah数\(L_n^{-1}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analytical two-center one-electron overlap and exchange integrals for \(^{1}\Sigma\) states: Lah number guided Coulomb Green function of H-like s-orbitals

Analytical two-center one-electron overlap and exchange integrals for \(^{1}\Sigma\) states: Lah number guided Coulomb Green function of H-like s-orbitals

Theoretical studies of two-center one-electron (2c-1e) small microcluster are associated with hurdles in Schr\(\ddot{o}\)dinger equation (SE) born out of divergence of Coulomb interactions and nuclear separation (R). The SE deals with morphologically altered H-like AOs, Slater type orbitals (STO), Gaussian type orbitals (GTO), B-spline, Sturmian function and etc in both VBT and MOT calculations. Few elegant computational and analytical methods are available for STO, GTO and other square integrable trial wavefunction under Born-Oppenheimer approximation. Even so, analytical treatment for H-like AOs has become very necessary. Utilizing Sheffer identity in associated Laguerre polynomial/Whittaker-M H-like AOs and adopting elliptic coordinates provide exact, analytical and simple 2c-1e Coulomb exchange interactions (Ks) and overlap integrals as functions of R with different scaling factors associated with electrons. The energetics of diatomic molecule is evident to be the function of R with extrema as Lah number moderated \(L_n^{-1}\) for nuclear coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences Chemistry-General Chemistry
CiteScore
2.90
自引率
5.90%
发文量
107
审稿时长
12 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信