简单集图的极小性

Pub Date : 2019-05-30 DOI:10.1007/s40062-019-00239-y
Carles Broto, Ramón Flores, Carlos Giraldo
{"title":"简单集图的极小性","authors":"Carles Broto,&nbsp;Ramón Flores,&nbsp;Carlos Giraldo","doi":"10.1007/s40062-019-00239-y","DOIUrl":null,"url":null,"abstract":"<p>We formulate the concept of minimal fibration in the context of fibrations in the model category <span>\\({\\mathbf {S}}^{\\mathcal {C}}\\)</span> of <span>\\({\\mathcal {C}}\\)</span>-diagrams of simplicial sets, for a small index category <span>\\({\\mathcal {C}}\\)</span>. When <span>\\({\\mathcal {C}}\\)</span> is an <i>EI</i>-category satisfying some mild finiteness restrictions, we show that every fibration of <span>\\({\\mathcal {C}}\\)</span>-diagrams admits a well-behaved minimal model. As a consequence, we establish a classification theorem for fibrations in <span>\\({\\mathbf {S}}^{\\mathcal {C}}\\)</span> over a constant diagram, generalizing the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations (Barratt?et?al. in Am J Math 81:639–657, 1959).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00239-y","citationCount":"0","resultStr":"{\"title\":\"Minimality in diagrams of simplicial sets\",\"authors\":\"Carles Broto,&nbsp;Ramón Flores,&nbsp;Carlos Giraldo\",\"doi\":\"10.1007/s40062-019-00239-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We formulate the concept of minimal fibration in the context of fibrations in the model category <span>\\\\({\\\\mathbf {S}}^{\\\\mathcal {C}}\\\\)</span> of <span>\\\\({\\\\mathcal {C}}\\\\)</span>-diagrams of simplicial sets, for a small index category <span>\\\\({\\\\mathcal {C}}\\\\)</span>. When <span>\\\\({\\\\mathcal {C}}\\\\)</span> is an <i>EI</i>-category satisfying some mild finiteness restrictions, we show that every fibration of <span>\\\\({\\\\mathcal {C}}\\\\)</span>-diagrams admits a well-behaved minimal model. As a consequence, we establish a classification theorem for fibrations in <span>\\\\({\\\\mathbf {S}}^{\\\\mathcal {C}}\\\\)</span> over a constant diagram, generalizing the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations (Barratt?et?al. in Am J Math 81:639–657, 1959).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00239-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00239-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00239-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个小的指标类别\({\mathcal {C}}\),我们在模型类别\({\mathbf {S}}^{\mathcal {C}}\) (\({\mathcal {C}}\) -简单集图)中的纤颤的背景下,提出了最小纤颤的概念。当\({\mathcal {C}}\)是满足一些温和有限限制的ei -范畴时,我们证明了\({\mathcal {C}}\) -图的每一个振动都承认一个表现良好的最小模型。因此,我们在一个常数图上建立了\({\mathbf {S}}^{\mathcal {C}}\)中纤维的分类定理,推广了Barratt, Gugenheim和Moore的简单纤维的分类定理(Barratt等人)。数学学报,81:639-657,1959)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Minimality in diagrams of simplicial sets

We formulate the concept of minimal fibration in the context of fibrations in the model category \({\mathbf {S}}^{\mathcal {C}}\) of \({\mathcal {C}}\)-diagrams of simplicial sets, for a small index category \({\mathcal {C}}\). When \({\mathcal {C}}\) is an EI-category satisfying some mild finiteness restrictions, we show that every fibration of \({\mathcal {C}}\)-diagrams admits a well-behaved minimal model. As a consequence, we establish a classification theorem for fibrations in \({\mathbf {S}}^{\mathcal {C}}\) over a constant diagram, generalizing the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations (Barratt?et?al. in Am J Math 81:639–657, 1959).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信