简单集图的极小性

IF 0.7 4区 数学 Q2 MATHEMATICS
Carles Broto, Ramón Flores, Carlos Giraldo
{"title":"简单集图的极小性","authors":"Carles Broto,&nbsp;Ramón Flores,&nbsp;Carlos Giraldo","doi":"10.1007/s40062-019-00239-y","DOIUrl":null,"url":null,"abstract":"<p>We formulate the concept of minimal fibration in the context of fibrations in the model category <span>\\({\\mathbf {S}}^{\\mathcal {C}}\\)</span> of <span>\\({\\mathcal {C}}\\)</span>-diagrams of simplicial sets, for a small index category <span>\\({\\mathcal {C}}\\)</span>. When <span>\\({\\mathcal {C}}\\)</span> is an <i>EI</i>-category satisfying some mild finiteness restrictions, we show that every fibration of <span>\\({\\mathcal {C}}\\)</span>-diagrams admits a well-behaved minimal model. As a consequence, we establish a classification theorem for fibrations in <span>\\({\\mathbf {S}}^{\\mathcal {C}}\\)</span> over a constant diagram, generalizing the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations (Barratt?et?al. in Am J Math 81:639–657, 1959).</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 4","pages":"1043 - 1082"},"PeriodicalIF":0.7000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00239-y","citationCount":"0","resultStr":"{\"title\":\"Minimality in diagrams of simplicial sets\",\"authors\":\"Carles Broto,&nbsp;Ramón Flores,&nbsp;Carlos Giraldo\",\"doi\":\"10.1007/s40062-019-00239-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We formulate the concept of minimal fibration in the context of fibrations in the model category <span>\\\\({\\\\mathbf {S}}^{\\\\mathcal {C}}\\\\)</span> of <span>\\\\({\\\\mathcal {C}}\\\\)</span>-diagrams of simplicial sets, for a small index category <span>\\\\({\\\\mathcal {C}}\\\\)</span>. When <span>\\\\({\\\\mathcal {C}}\\\\)</span> is an <i>EI</i>-category satisfying some mild finiteness restrictions, we show that every fibration of <span>\\\\({\\\\mathcal {C}}\\\\)</span>-diagrams admits a well-behaved minimal model. As a consequence, we establish a classification theorem for fibrations in <span>\\\\({\\\\mathbf {S}}^{\\\\mathcal {C}}\\\\)</span> over a constant diagram, generalizing the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations (Barratt?et?al. in Am J Math 81:639–657, 1959).</p>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"14 4\",\"pages\":\"1043 - 1082\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00239-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00239-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00239-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个小的指标类别\({\mathcal {C}}\),我们在模型类别\({\mathbf {S}}^{\mathcal {C}}\) (\({\mathcal {C}}\) -简单集图)中的纤颤的背景下,提出了最小纤颤的概念。当\({\mathcal {C}}\)是满足一些温和有限限制的ei -范畴时,我们证明了\({\mathcal {C}}\) -图的每一个振动都承认一个表现良好的最小模型。因此,我们在一个常数图上建立了\({\mathbf {S}}^{\mathcal {C}}\)中纤维的分类定理,推广了Barratt, Gugenheim和Moore的简单纤维的分类定理(Barratt等人)。数学学报,81:639-657,1959)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimality in diagrams of simplicial sets

We formulate the concept of minimal fibration in the context of fibrations in the model category \({\mathbf {S}}^{\mathcal {C}}\) of \({\mathcal {C}}\)-diagrams of simplicial sets, for a small index category \({\mathcal {C}}\). When \({\mathcal {C}}\) is an EI-category satisfying some mild finiteness restrictions, we show that every fibration of \({\mathcal {C}}\)-diagrams admits a well-behaved minimal model. As a consequence, we establish a classification theorem for fibrations in \({\mathbf {S}}^{\mathcal {C}}\) over a constant diagram, generalizing the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations (Barratt?et?al. in Am J Math 81:639–657, 1959).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信