二维Navier-Stokes方程的不连续Galerkin有限元逼近

I. Mozolevski, E. Süli, P. R. Bösing
{"title":"二维Navier-Stokes方程的不连续Galerkin有限元逼近","authors":"I. Mozolevski, E. Süli, P. R. Bösing","doi":"10.1002/CNM.944","DOIUrl":null,"url":null,"abstract":"In this paper, we present the construction and computational assessment of an hp-version discontinuous Galerkin finite element method (DGFEM) for the numerical solution of the Navier-Stokes equations governing 2D stationary incompressible flows. Using a stream-function formulation, which ensures that the incompressibility constraint is automatically satisfied, we reduce the system of Navier-Stokes equations to a single fourth-order nonlinear partial differential equation. We introduce a discretization of this fourth-order nonlinear partial differential equation based on a combination of the symmetric DGFEM for the biharmonic part of the equation and a DGFEM with jump-penalty terms for the hyperbolic part of the problem, and then we solve the resulting nonlinear problem using Newton's method. Numerical examples, including the solution of the 2D lid-driven cavity flow problem, are presented to demonstrate the convergence and accuracy of the method.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"23 1","pages":"447-459"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.944","citationCount":"18","resultStr":"{\"title\":\"Discontinuous Galerkin finite element approximation of the two-dimensional Navier-Stokes equations in stream-function formulation\",\"authors\":\"I. Mozolevski, E. Süli, P. R. Bösing\",\"doi\":\"10.1002/CNM.944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the construction and computational assessment of an hp-version discontinuous Galerkin finite element method (DGFEM) for the numerical solution of the Navier-Stokes equations governing 2D stationary incompressible flows. Using a stream-function formulation, which ensures that the incompressibility constraint is automatically satisfied, we reduce the system of Navier-Stokes equations to a single fourth-order nonlinear partial differential equation. We introduce a discretization of this fourth-order nonlinear partial differential equation based on a combination of the symmetric DGFEM for the biharmonic part of the equation and a DGFEM with jump-penalty terms for the hyperbolic part of the problem, and then we solve the resulting nonlinear problem using Newton's method. Numerical examples, including the solution of the 2D lid-driven cavity flow problem, are presented to demonstrate the convergence and accuracy of the method.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"23 1\",\"pages\":\"447-459\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.944\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们提出了一个hp版本的不连续Galerkin有限元法(DGFEM)的构造和计算评估,该方法用于控制二维稳态不可压缩流动的Navier-Stokes方程的数值解。利用保证不可压缩性约束自动满足的流函数公式,将Navier-Stokes方程组简化为单个四阶非线性偏微分方程。对该四阶非线性偏微分方程采用双调和部分的对称微分法和双曲部分的带跳罚项的微分法进行离散化,并采用牛顿法求解。数值算例验证了该方法的收敛性和准确性,包括二维盖驱动腔流问题的求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous Galerkin finite element approximation of the two-dimensional Navier-Stokes equations in stream-function formulation
In this paper, we present the construction and computational assessment of an hp-version discontinuous Galerkin finite element method (DGFEM) for the numerical solution of the Navier-Stokes equations governing 2D stationary incompressible flows. Using a stream-function formulation, which ensures that the incompressibility constraint is automatically satisfied, we reduce the system of Navier-Stokes equations to a single fourth-order nonlinear partial differential equation. We introduce a discretization of this fourth-order nonlinear partial differential equation based on a combination of the symmetric DGFEM for the biharmonic part of the equation and a DGFEM with jump-penalty terms for the hyperbolic part of the problem, and then we solve the resulting nonlinear problem using Newton's method. Numerical examples, including the solution of the 2D lid-driven cavity flow problem, are presented to demonstrate the convergence and accuracy of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信