不可压缩自由表面流动数值解的隐式和自适应迎风工具组合

V. G. Ferreira, C. Oishi, F. A. Kurokawa, M. K. Kaibara, J. Cuminato, A. Castelo, N. Mangiavacchi, M. F. Tomé, S. McKee
{"title":"不可压缩自由表面流动数值解的隐式和自适应迎风工具组合","authors":"V. G. Ferreira, C. Oishi, F. A. Kurokawa, M. K. Kaibara, J. Cuminato, A. Castelo, N. Mangiavacchi, M. F. Tomé, S. McKee","doi":"10.1002/CNM.900","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110:171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"23 1","pages":"419-445"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.900","citationCount":"17","resultStr":"{\"title\":\"A combination of implicit and adaptative upwind tools for the numerical solution of incompressible free surface flows\",\"authors\":\"V. G. Ferreira, C. Oishi, F. A. Kurokawa, M. K. Kaibara, J. Cuminato, A. Castelo, N. Mangiavacchi, M. F. Tomé, S. McKee\",\"doi\":\"10.1002/CNM.900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110:171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"23 1\",\"pages\":\"419-445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.900\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了随时间变化的二维不可压缩流的数值解。利用速度和压力这两个原始变量,用半隐式有限差分投影法求解了Navier-Stokes方程和质量守恒方程。采用一种新的有界高阶迎风对流格式来处理非线性(平流)项。该程序是对GENSMAC (J. Comput。学报。1994;(110:171-186)在低和高雷诺数下计算受限和自由表面流体流动的方法。使用二维版的自由流动模拟系统(J. Comp. Visual)进行计算。科学2000;2:199 - 210)。为了证明数值方法的能力,给出了各种测试用例。它们是沟道中完全发育的水流、经过向后台阶的水流、模胀问题、溃坝水流和撞击平板的射流。数值计算结果与实验数据及解析解吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combination of implicit and adaptative upwind tools for the numerical solution of incompressible free surface flows
This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110:171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信