椭圆型偏微分方程数值解的一种更容易实现的全偏微分方程方法

Z. Dostál, D. Hořák, R. Kučera
{"title":"椭圆型偏微分方程数值解的一种更容易实现的全偏微分方程方法","authors":"Z. Dostál, D. Hořák, R. Kučera","doi":"10.1002/CNM.881","DOIUrl":null,"url":null,"abstract":"A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"22 1","pages":"1155-1162"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.881","citationCount":"174","resultStr":"{\"title\":\"Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE\",\"authors\":\"Z. Dostál, D. Hořák, R. Kučera\",\"doi\":\"10.1002/CNM.881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"22 1\",\"pages\":\"1155-1162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.881\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 174

摘要

提出了求解椭圆型偏微分方程的一种新的FETI方法。其基本思想是利用拉格朗日乘法器简化子域刚度矩阵的反演,不仅用于沿辅助界面粘接子域,而且用于实现狄利克雷边界条件。数值实验结果表明,新方法比原方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE
A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信