{"title":"椭圆型偏微分方程数值解的一种更容易实现的全偏微分方程方法","authors":"Z. Dostál, D. Hořák, R. Kučera","doi":"10.1002/CNM.881","DOIUrl":null,"url":null,"abstract":"A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"22 1","pages":"1155-1162"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.881","citationCount":"174","resultStr":"{\"title\":\"Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE\",\"authors\":\"Z. Dostál, D. Hořák, R. Kučera\",\"doi\":\"10.1002/CNM.881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"22 1\",\"pages\":\"1155-1162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.881\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE
A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.