四边形元向三角形元退化的研究

L. Li, X.-P. Han, S.-q. Xu
{"title":"四边形元向三角形元退化的研究","authors":"L. Li, X.-P. Han, S.-q. Xu","doi":"10.1002/CNM.704","DOIUrl":null,"url":null,"abstract":"In this paper, the problems involved in the process of degeneration of quadrilateral element into triangular element are thoroughly analysed. The contents include the formulation of the geometry mapping induced by collapsing one side of the quadrilateral element and the construction of the shape functions. The study focuses first on a 4-node bilinear quadrilateral (Q4) element to 3-node constant strain triangular (CST) element, and then on a 8-node serendipity (Q8) element to 6-node triangular element (T6). In the analysis, the quadrilateral element and degenerate triangular element are assumed to be enclosed by straight edges. The theoretical results show that there is another better approach to realize the degeneration, and that even for conventional approach of degeneration we can give more reasonable explanation to the unclear problems like the CST property in degenerate CST element and the necessity of the additional terms in degenerate T6 element. Copyright © 2004 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"20 1","pages":"671-679"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.704","citationCount":"5","resultStr":"{\"title\":\"Study on the degeneration of quadrilateral element to triangular element\",\"authors\":\"L. Li, X.-P. Han, S.-q. Xu\",\"doi\":\"10.1002/CNM.704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problems involved in the process of degeneration of quadrilateral element into triangular element are thoroughly analysed. The contents include the formulation of the geometry mapping induced by collapsing one side of the quadrilateral element and the construction of the shape functions. The study focuses first on a 4-node bilinear quadrilateral (Q4) element to 3-node constant strain triangular (CST) element, and then on a 8-node serendipity (Q8) element to 6-node triangular element (T6). In the analysis, the quadrilateral element and degenerate triangular element are assumed to be enclosed by straight edges. The theoretical results show that there is another better approach to realize the degeneration, and that even for conventional approach of degeneration we can give more reasonable explanation to the unclear problems like the CST property in degenerate CST element and the necessity of the additional terms in degenerate T6 element. Copyright © 2004 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"20 1\",\"pages\":\"671-679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.704\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文对四边形单元退化为三角形单元过程中所涉及的问题进行了深入的分析。其内容包括四边形单元单侧塌缩引起的几何映射的公式和形状函数的构造。首先研究了4节点双线性四边形(Q4)单元到3节点恒应变三角形(CST)单元,然后研究了8节点偶然性(Q8)单元到6节点三角形单元(T6)。在分析中,假定四边形单元和退化三角形单元被直边包围。理论结果表明,存在另一种更好的退化方法,即使采用传统的退化方法,也能更合理地解释退化CST单元的CST性质和退化T6单元中附加项的必要性等不明确的问题。版权所有©2004 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the degeneration of quadrilateral element to triangular element
In this paper, the problems involved in the process of degeneration of quadrilateral element into triangular element are thoroughly analysed. The contents include the formulation of the geometry mapping induced by collapsing one side of the quadrilateral element and the construction of the shape functions. The study focuses first on a 4-node bilinear quadrilateral (Q4) element to 3-node constant strain triangular (CST) element, and then on a 8-node serendipity (Q8) element to 6-node triangular element (T6). In the analysis, the quadrilateral element and degenerate triangular element are assumed to be enclosed by straight edges. The theoretical results show that there is another better approach to realize the degeneration, and that even for conventional approach of degeneration we can give more reasonable explanation to the unclear problems like the CST property in degenerate CST element and the necessity of the additional terms in degenerate T6 element. Copyright © 2004 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信