{"title":"微纳机电系统拉入不稳定状态预测的变分迭代法","authors":"N. Anjum, J.-H. He, C.-H. He, K. A. Gepreel","doi":"10.1134/S1029959923030013","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of micro/nanoelectromechanical systems (M/NEMS) is a core research area in micromechanics. Due to the nonlinearities and the singular nature of actuation forces that emerge in these systems, it has become a promising and challenging research area. The foremost objective of this manuscript is to examine the dynamics of M/NEMS by approximating rational terms involved in M/NEMS structures. An M/NEMS switch under electromagnetic force is adopted to reveal the effectiveness of the expansion of rational terms. Taylor series is employed to approximate the rational function into the summation of simple terms. The well-known variational iteration method is engaged to obtain the dynamic pull-in threshold value, the nonlinear frequency, and the analytical solution of the objective system. The solution obtained from the proposed strategy exhibits good agreement with observations obtained numerically. As opposed to the existing approaches, the suggested scheme achieves a high level of accuracy.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 3","pages":"241 - 250"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Variational Iteration Method for Prediction of the Pull-In Instability Condition of Micro/Nanoelectromechanical Systems\",\"authors\":\"N. Anjum, J.-H. He, C.-H. He, K. A. Gepreel\",\"doi\":\"10.1134/S1029959923030013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamics of micro/nanoelectromechanical systems (M/NEMS) is a core research area in micromechanics. Due to the nonlinearities and the singular nature of actuation forces that emerge in these systems, it has become a promising and challenging research area. The foremost objective of this manuscript is to examine the dynamics of M/NEMS by approximating rational terms involved in M/NEMS structures. An M/NEMS switch under electromagnetic force is adopted to reveal the effectiveness of the expansion of rational terms. Taylor series is employed to approximate the rational function into the summation of simple terms. The well-known variational iteration method is engaged to obtain the dynamic pull-in threshold value, the nonlinear frequency, and the analytical solution of the objective system. The solution obtained from the proposed strategy exhibits good agreement with observations obtained numerically. As opposed to the existing approaches, the suggested scheme achieves a high level of accuracy.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"26 3\",\"pages\":\"241 - 250\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959923030013\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923030013","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Variational Iteration Method for Prediction of the Pull-In Instability Condition of Micro/Nanoelectromechanical Systems
The dynamics of micro/nanoelectromechanical systems (M/NEMS) is a core research area in micromechanics. Due to the nonlinearities and the singular nature of actuation forces that emerge in these systems, it has become a promising and challenging research area. The foremost objective of this manuscript is to examine the dynamics of M/NEMS by approximating rational terms involved in M/NEMS structures. An M/NEMS switch under electromagnetic force is adopted to reveal the effectiveness of the expansion of rational terms. Taylor series is employed to approximate the rational function into the summation of simple terms. The well-known variational iteration method is engaged to obtain the dynamic pull-in threshold value, the nonlinear frequency, and the analytical solution of the objective system. The solution obtained from the proposed strategy exhibits good agreement with observations obtained numerically. As opposed to the existing approaches, the suggested scheme achieves a high level of accuracy.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.