\({ \mathsf {TQ} }\)-补全和恒等函子的泰勒塔

Pub Date : 2022-03-30 DOI:10.1007/s40062-022-00303-0
Nikolas Schonsheck
{"title":"\\({ \\mathsf {TQ} }\\)-补全和恒等函子的泰勒塔","authors":"Nikolas Schonsheck","doi":"10.1007/s40062-022-00303-0","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this short paper is to study the convergence of the Taylor tower of the identity functor in the context of operadic algebras in spectra. Specifically, we show that if <i>A</i> is a <span>\\((-1)\\)</span>-connected <span>\\({ \\mathcal {O} }\\)</span>-algebra with 0-connected <span>\\({ \\mathsf {TQ} }\\)</span>-homology spectrum <span>\\({ \\mathsf {TQ} }(A)\\)</span>, then there is a natural weak equivalence <span>\\(P_\\infty ({ \\mathrm {id} })A \\simeq A^\\wedge _{ \\mathsf {TQ} }\\)</span> between the limit of the Taylor tower of the identity functor evaluated on <i>A</i> and the <span>\\({ \\mathsf {TQ} }\\)</span>-completion of <i>A</i>. Since, in this context, the identity functor is only known to be 0-analytic, this result extends knowledge of the Taylor tower of the identity beyond its “radius of convergence.”</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"\\\\({ \\\\mathsf {TQ} }\\\\)-completion and the Taylor tower of the identity functor\",\"authors\":\"Nikolas Schonsheck\",\"doi\":\"10.1007/s40062-022-00303-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this short paper is to study the convergence of the Taylor tower of the identity functor in the context of operadic algebras in spectra. Specifically, we show that if <i>A</i> is a <span>\\\\((-1)\\\\)</span>-connected <span>\\\\({ \\\\mathcal {O} }\\\\)</span>-algebra with 0-connected <span>\\\\({ \\\\mathsf {TQ} }\\\\)</span>-homology spectrum <span>\\\\({ \\\\mathsf {TQ} }(A)\\\\)</span>, then there is a natural weak equivalence <span>\\\\(P_\\\\infty ({ \\\\mathrm {id} })A \\\\simeq A^\\\\wedge _{ \\\\mathsf {TQ} }\\\\)</span> between the limit of the Taylor tower of the identity functor evaluated on <i>A</i> and the <span>\\\\({ \\\\mathsf {TQ} }\\\\)</span>-completion of <i>A</i>. Since, in this context, the identity functor is only known to be 0-analytic, this result extends knowledge of the Taylor tower of the identity beyond its “radius of convergence.”</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00303-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00303-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是研究谱中操作代数下恒等函子泰勒塔的收敛性。具体地说,我们证明如果A是一个具有0连通\({ \mathsf {TQ} }\) -同调谱\({ \mathsf {TQ} }(A)\)的\((-1)\) -连通\({ \mathcal {O} }\) -代数,那么在A上求值的恒等函子的泰勒塔极限与A的\({ \mathsf {TQ} }\) -补全之间存在一个自然弱等价\(P_\infty ({ \mathrm {id} })A \simeq A^\wedge _{ \mathsf {TQ} }\)。这个结果将恒等式泰勒塔的知识扩展到它的“收敛半径”之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
\({ \mathsf {TQ} }\)-completion and the Taylor tower of the identity functor

The goal of this short paper is to study the convergence of the Taylor tower of the identity functor in the context of operadic algebras in spectra. Specifically, we show that if A is a \((-1)\)-connected \({ \mathcal {O} }\)-algebra with 0-connected \({ \mathsf {TQ} }\)-homology spectrum \({ \mathsf {TQ} }(A)\), then there is a natural weak equivalence \(P_\infty ({ \mathrm {id} })A \simeq A^\wedge _{ \mathsf {TQ} }\) between the limit of the Taylor tower of the identity functor evaluated on A and the \({ \mathsf {TQ} }\)-completion of A. Since, in this context, the identity functor is only known to be 0-analytic, this result extends knowledge of the Taylor tower of the identity beyond its “radius of convergence.”

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信