S. Rajendran
{"title":"用Prathap最佳拟合方法求高阶杆件的最优应力恢复点","authors":"S. Rajendran","doi":"10.1002/CNM.1129","DOIUrl":null,"url":null,"abstract":"Barlow was the first to propose a method to predict optimal stress recovery points in finite elements (FEs). Prathap proposed an alternative method that is based on the variational principle. The optimal points predicted by Prathap, called Prathap points in this paper, have been reported in the literature for linear, quadratic and cubic elements. Prathap points turn out to be the same as Barlow points for linear and quadratic bar elements but different for cubic bar element. Nevertheless, for all the three elements, Prathap points coincide with the reduced Gaussian integration points. In this paper, an alternative implementation of Prathap's best-fit method is used to compute Prathap points for higher-order (viz., 4–10th order) bar elements. The effectiveness of Prathap points as points of accurate stress recovery is verified by actual FE analysis for typical bar problems. Copyright © 2008 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1129","citationCount":"3","resultStr":"{\"title\":\"Optimal stress recovery points for higher-order bar elements by Prathap's best-fit method\",\"authors\":\"S. Rajendran\",\"doi\":\"10.1002/CNM.1129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Barlow was the first to propose a method to predict optimal stress recovery points in finite elements (FEs). Prathap proposed an alternative method that is based on the variational principle. The optimal points predicted by Prathap, called Prathap points in this paper, have been reported in the literature for linear, quadratic and cubic elements. Prathap points turn out to be the same as Barlow points for linear and quadratic bar elements but different for cubic bar element. Nevertheless, for all the three elements, Prathap points coincide with the reduced Gaussian integration points. In this paper, an alternative implementation of Prathap's best-fit method is used to compute Prathap points for higher-order (viz., 4–10th order) bar elements. The effectiveness of Prathap points as points of accurate stress recovery is verified by actual FE analysis for typical bar problems. Copyright © 2008 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1129\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Optimal stress recovery points for higher-order bar elements by Prathap's best-fit method
Barlow was the first to propose a method to predict optimal stress recovery points in finite elements (FEs). Prathap proposed an alternative method that is based on the variational principle. The optimal points predicted by Prathap, called Prathap points in this paper, have been reported in the literature for linear, quadratic and cubic elements. Prathap points turn out to be the same as Barlow points for linear and quadratic bar elements but different for cubic bar element. Nevertheless, for all the three elements, Prathap points coincide with the reduced Gaussian integration points. In this paper, an alternative implementation of Prathap's best-fit method is used to compute Prathap points for higher-order (viz., 4–10th order) bar elements. The effectiveness of Prathap points as points of accurate stress recovery is verified by actual FE analysis for typical bar problems. Copyright © 2008 John Wiley & Sons, Ltd.